On the existence of an uncountable infinity of asymptotic structures on 𝐇 2

Renata Grimaldi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 147-151
  • ISSN: 1120-6330

Abstract

top
It is shown the existence of an uncountable infinity of asymptotic structures (i.e. equivalence's classes of quasi-isometric riemannian metrics) on the conformal class of the hyperbolic plan 𝐇 2 .

How to cite

top

Grimaldi, Renata. "Sur l'existence d'une infinité continue de structures asymptotiques sur $\mathbf{H}^{2}$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 147-151. <http://eudml.org/doc/287455>.

@article{Grimaldi1989,
author = {Grimaldi, Renata},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Riemannian metrics; Quasi-isometries; Growth-type; quasi-isometries; growth-type; asymptotic structures},
language = {fre},
month = {12},
number = {1},
pages = {147-151},
publisher = {Accademia Nazionale dei Lincei},
title = {Sur l'existence d'une infinité continue de structures asymptotiques sur $\mathbf\{H\}^\{2\}$},
url = {http://eudml.org/doc/287455},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Grimaldi, Renata
TI - Sur l'existence d'une infinité continue de structures asymptotiques sur $\mathbf{H}^{2}$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 147
EP - 151
LA - fre
KW - Riemannian metrics; Quasi-isometries; Growth-type; quasi-isometries; growth-type; asymptotic structures
UR - http://eudml.org/doc/287455
ER -

References

top
  1. GOBILLON, C., 1986. Feuilletages. Etudes géométriques. Vol. II, Publications de l'I.R.M.A. de Strasbourg. 
  2. GRIMALDI, R., 1983. Sulla geometria asintotica delle foglie di una foliazione. Rend. Circ. Mat. Palermo, s. II, 32: 199-207. Zbl0529.57013MR729095DOI10.1007/BF02844830
  3. GRIMALDI, R., 1986. Non esistenza di cusps nella geometria asintotica delle foglie. Atti Accad. Lincei, Rend. Cl. Sc. Fis. Mat. Natur., s. VIII, LXXX, fasc. 5: 292-297. Zbl0679.57014MR977140
  4. GRIMALDI, R., 1988. Sur l'existence d'une infinité continue de structures asymptotiques sur 2 . Jour. de Math. pures et appliquées, 67: 405-410. Zbl0619.53024MR978578
  5. GRIMALDI, R.. Sur l'existence d'une infinité continue de structures asymptotiques sur n . Atti Accad. Lincei, Rend. Cl. Sc. Fis. Mat. Natur. (sous presse). Zbl0743.53025
  6. HECTOR, G., 1978. Croissance des feuilletages presque sans holonomie. Lecture Notes in Math., 652: 141-182, Springer-Verlag. Zbl0393.57005MR505659
  7. O'NEILL, B., 1966. Elementary differential geometry. Academic Press. Zbl0971.53500MR203595
  8. PHILLIPS, A. - SULLIVAN, D., 1981. Geometry of leaves. Topology, 20: 209-218. Zbl0454.57016MR605659DOI10.1016/0040-9383(81)90039-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.