A remark on the asymmetry of convolution operators

Saverio Giulini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 85-88
  • ISSN: 1120-6330

Abstract

top
A convolution operator, bounded on L q ( n ) , is bounded on L p ( n ) , with the same operator norm, if p and q are conjugate exponents. It is well known that this fact is false if we replace n with a general non-commutative locally compact group G . In this paper we give a simple construction of a convolution operator on a suitable compact group G , wich is bounded on L q ( G ) for every q [ 2 , ) and is unbounded on L p ( G ) if p [ 1 , 2 ) .

How to cite

top

Giulini, Saverio. "A remark on the asymmetry of convolution operators." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 85-88. <http://eudml.org/doc/287510>.

@article{Giulini1989,
abstract = {A convolution operator, bounded on $L^\{q\}(\mathbb\{R\}^\{n\})$, is bounded on $L^\{p\}(\mathbb\{R\}^\{n\})$, with the same operator norm, if $p$ and $q$ are conjugate exponents. It is well known that this fact is false if we replace $\mathbb\{R\}^\{n\}$ with a general non-commutative locally compact group $G$. In this paper we give a simple construction of a convolution operator on a suitable compact group $G$, wich is bounded on $L^\{q\}(G)$ for every $q \in [2,\infty)$ and is unbounded on $L^\{p\}(G)$ if $p \in [1,2)$.},
author = {Giulini, Saverio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Non-commutative groups; Convolution operators; Asymmetry; convolution; conjugate exponents; non-commutative locally compact group; compact group},
language = {eng},
month = {12},
number = {1},
pages = {85-88},
publisher = {Accademia Nazionale dei Lincei},
title = {A remark on the asymmetry of convolution operators},
url = {http://eudml.org/doc/287510},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Giulini, Saverio
TI - A remark on the asymmetry of convolution operators
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 85
EP - 88
AB - A convolution operator, bounded on $L^{q}(\mathbb{R}^{n})$, is bounded on $L^{p}(\mathbb{R}^{n})$, with the same operator norm, if $p$ and $q$ are conjugate exponents. It is well known that this fact is false if we replace $\mathbb{R}^{n}$ with a general non-commutative locally compact group $G$. In this paper we give a simple construction of a convolution operator on a suitable compact group $G$, wich is bounded on $L^{q}(G)$ for every $q \in [2,\infty)$ and is unbounded on $L^{p}(G)$ if $p \in [1,2)$.
LA - eng
KW - Non-commutative groups; Convolution operators; Asymmetry; convolution; conjugate exponents; non-commutative locally compact group; compact group
UR - http://eudml.org/doc/287510
ER -

References

top
  1. BARONTI, M. and FORESTI, G., 1982. An example of asymmetry of convolution operators. Rend. Circ. Mat. Palermo, (2), 31: 341-350. Zbl0505.43005MR693581DOI10.1007/BF02851145
  2. CLARKSON, J.A., 1936. Uniformly convex spaces. Trans. Amer. Mat. Soc., 40: 396-414. Zbl0015.35604MR1501880JFM62.0460.04
  3. HERZ, C., 1976. On the asymmetry of norms of convolution operators. J. Functional Anal., 23: 11-22. Zbl0332.43005MR420138
  4. HEWITT, E. and ROSS, K., 1970. Abstract Harmonic Analysis. II. Springer Verlag, New York. Zbl0213.40103MR262773
  5. MANTERO, A.M., 1982. Asymmetry of twisted convolution operators. J. Functional Analysis, 47: 145-158. Zbl0533.43007MR663831DOI10.1016/0022-1236(82)90098-2
  6. MANTERO, A.M., 1985. Asymmetry of convolution operators on the Heisenberg group. Boll. Un. Mat. Ital., (6), 4-A: 19-27. Zbl0561.43004MR781790
  7. OBERLIN, D., 1975. M p ( G ) M p ( G ) ( p - 1 + q - 1 = 1 ) . Israel J. Math., 22: 175-179. Zbl0314.43005MR387956

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.