A remark on the asymmetry of convolution operators
- Volume: 83, Issue: 1, page 85-88
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGiulini, Saverio. "A remark on the asymmetry of convolution operators." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 85-88. <http://eudml.org/doc/287510>.
@article{Giulini1989,
abstract = {A convolution operator, bounded on $L^\{q\}(\mathbb\{R\}^\{n\})$, is bounded on $L^\{p\}(\mathbb\{R\}^\{n\})$, with the same operator norm, if $p$ and $q$ are conjugate exponents. It is well known that this fact is false if we replace $\mathbb\{R\}^\{n\}$ with a general non-commutative locally compact group $G$. In this paper we give a simple construction of a convolution operator on a suitable compact group $G$, wich is bounded on $L^\{q\}(G)$ for every $q \in [2,\infty)$ and is unbounded on $L^\{p\}(G)$ if $p \in [1,2)$.},
author = {Giulini, Saverio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Non-commutative groups; Convolution operators; Asymmetry; convolution; conjugate exponents; non-commutative locally compact group; compact group},
language = {eng},
month = {12},
number = {1},
pages = {85-88},
publisher = {Accademia Nazionale dei Lincei},
title = {A remark on the asymmetry of convolution operators},
url = {http://eudml.org/doc/287510},
volume = {83},
year = {1989},
}
TY - JOUR
AU - Giulini, Saverio
TI - A remark on the asymmetry of convolution operators
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 85
EP - 88
AB - A convolution operator, bounded on $L^{q}(\mathbb{R}^{n})$, is bounded on $L^{p}(\mathbb{R}^{n})$, with the same operator norm, if $p$ and $q$ are conjugate exponents. It is well known that this fact is false if we replace $\mathbb{R}^{n}$ with a general non-commutative locally compact group $G$. In this paper we give a simple construction of a convolution operator on a suitable compact group $G$, wich is bounded on $L^{q}(G)$ for every $q \in [2,\infty)$ and is unbounded on $L^{p}(G)$ if $p \in [1,2)$.
LA - eng
KW - Non-commutative groups; Convolution operators; Asymmetry; convolution; conjugate exponents; non-commutative locally compact group; compact group
UR - http://eudml.org/doc/287510
ER -
References
top- BARONTI, M. and FORESTI, G., 1982. An example of asymmetry of convolution operators. Rend. Circ. Mat. Palermo, (2), 31: 341-350. Zbl0505.43005MR693581DOI10.1007/BF02851145
- CLARKSON, J.A., 1936. Uniformly convex spaces. Trans. Amer. Mat. Soc., 40: 396-414. Zbl0015.35604MR1501880JFM62.0460.04
- HERZ, C., 1976. On the asymmetry of norms of convolution operators. J. Functional Anal., 23: 11-22. Zbl0332.43005MR420138
- HEWITT, E. and ROSS, K., 1970. Abstract Harmonic Analysis. II. Springer Verlag, New York. Zbl0213.40103MR262773
- MANTERO, A.M., 1982. Asymmetry of twisted convolution operators. J. Functional Analysis, 47: 145-158. Zbl0533.43007MR663831DOI10.1016/0022-1236(82)90098-2
- MANTERO, A.M., 1985. Asymmetry of convolution operators on the Heisenberg group. Boll. Un. Mat. Ital., (6), 4-A: 19-27. Zbl0561.43004MR781790
- OBERLIN, D., 1975. . Israel J. Math., 22: 175-179. Zbl0314.43005MR387956
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.