Permutability of centre-by-finite groups

Brunetto Piochi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 153-158
  • ISSN: 1120-6330

Abstract

top
Let G be a group and m be an integer greater than or equal to 2 . G is said to be m -permutable if every product of m elements can be reordered at least in one way. We prove that, if G has a centre of finite index z , then G is ( 1 + [ z / 2 ] ) -permutable. More bounds are given on the least m such that G is m -permutable.

How to cite

top

Piochi, Brunetto. "Permutability of centre-by-finite groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 153-158. <http://eudml.org/doc/287513>.

@article{Piochi1989,
abstract = {Let $G$ be a group and $m$ be an integer greater than or equal to $2$. $G$ is said to be $m$-permutable if every product of $m$ elements can be reordered at least in one way. We prove that, if $G$ has a centre of finite index $z$, then $G$ is $(1 + [z/2])$-permutable. More bounds are given on the least $m$ such that $G$ is $m$-permutable.},
author = {Piochi, Brunetto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Centre-by-Finite Groups; Rewritable groups; Permutability; permutation property; rewritable groups; permutable groups; finite-by- Abelian-by-finite groups; center; finite index},
language = {eng},
month = {12},
number = {1},
pages = {153-158},
publisher = {Accademia Nazionale dei Lincei},
title = {Permutability of centre-by-finite groups},
url = {http://eudml.org/doc/287513},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Piochi, Brunetto
TI - Permutability of centre-by-finite groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 153
EP - 158
AB - Let $G$ be a group and $m$ be an integer greater than or equal to $2$. $G$ is said to be $m$-permutable if every product of $m$ elements can be reordered at least in one way. We prove that, if $G$ has a centre of finite index $z$, then $G$ is $(1 + [z/2])$-permutable. More bounds are given on the least $m$ such that $G$ is $m$-permutable.
LA - eng
KW - Centre-by-Finite Groups; Rewritable groups; Permutability; permutation property; rewritable groups; permutable groups; finite-by- Abelian-by-finite groups; center; finite index
UR - http://eudml.org/doc/287513
ER -

References

top
  1. CURZIO, M., 1985. Sul problema di Burnside. Quad. Ist. Mat. Appi. Univ. L'Aquila, 8: 1-24. 
  2. CURZIO, M., LONGOBARDI, P. and MAJ, M., 1983. Su di un problema combinatorio in Teoria dei Gruppi. Atti Acc. Lincei Rend. fis., VIII, 74: 136-142. Zbl0528.20031MR739397
  3. CURZIO, M., LONGOBARDI, P., MAY, M. and ROBINSON, D.J.S., 1985. A permutational property of groups. Arch. Math., 44: 385-389. Zbl0544.20036MR792360DOI10.1007/BF01229319
  4. GARZON, M. and ZALCSTEIN, Y., 1987. On permutation properties in groups and semigroups. Semigroup Forum, 35: 337-351. Zbl0623.20040MR900108DOI10.1007/BF02573115
  5. PIOCHI, B. and PIRILLO, G., 1988. Sur une propriété combinatone des groupes finis. C.R. Acad. Sci. Paris, 307, I: 115-117. Zbl0647.20032MR954272
  6. RESTTVO, A. and REUTENAUER, C., 1984. On the Burnside problem for semigroups. J. Algebra, 89; 102-104. Zbl0545.20051MR748230DOI10.1016/0021-8693(84)90237-0
  7. SUZUKI, M., 1982. Group Theory I. Springer Verlag, Berlin. MR648772

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.