SCAP-subalgebras of Lie algebras
Sara Chehrazi; Ali Reza Salemkar
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 4, page 1177-1184
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChehrazi, Sara, and Salemkar, Ali Reza. "SCAP-subalgebras of Lie algebras." Czechoslovak Mathematical Journal 66.4 (2016): 1177-1184. <http://eudml.org/doc/287523>.
@article{Chehrazi2016,
abstract = {A subalgebra $H$ of a finite dimensional Lie algebra $L$ is said to be a $\rm SCAP$-subalgebra if there is a chief series $0=L_0\subset L_1\subset \ldots \subset L_t=L$ of $L$ such that for every $i=1,2,\ldots ,t$, we have $H+L_i=H+L_\{i-1\}$ or $H\cap L_i=H\cap L_\{i-1\}$. This is analogous to the concept of $\rm SCAP$-subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its $\rm SCAP$-subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable.},
author = {Chehrazi, Sara, Salemkar, Ali Reza},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lie algebra; $\rm SCAP$-subalgebra; chief series; solvable; supersolvable; Lie algebra; $\text\{SCAP\}$-subalgebra; chief series; solvable; supersolvable},
language = {eng},
number = {4},
pages = {1177-1184},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {SCAP-subalgebras of Lie algebras},
url = {http://eudml.org/doc/287523},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Chehrazi, Sara
AU - Salemkar, Ali Reza
TI - SCAP-subalgebras of Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1177
EP - 1184
AB - A subalgebra $H$ of a finite dimensional Lie algebra $L$ is said to be a $\rm SCAP$-subalgebra if there is a chief series $0=L_0\subset L_1\subset \ldots \subset L_t=L$ of $L$ such that for every $i=1,2,\ldots ,t$, we have $H+L_i=H+L_{i-1}$ or $H\cap L_i=H\cap L_{i-1}$. This is analogous to the concept of $\rm SCAP$-subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its $\rm SCAP$-subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable.
LA - eng
KW - Lie algebra; $\rm SCAP$-subalgebra; chief series; solvable; supersolvable; Lie algebra; $\text{SCAP}$-subalgebra; chief series; solvable; supersolvable
UR - http://eudml.org/doc/287523
ER -
References
top- Ballester-Bolinches, A., Ezquerro, L. M., Skiba, A. N., 10.1016/j.jpaa.2010.06.020, J. Pure Appl. Algebra 215 (2011), 705-714. (2011) Zbl1223.20012MR2738383DOI10.1016/j.jpaa.2010.06.020
- Barnes, D. W., 10.1007/BF01109800, Math. Z. 101 (1967), 350-355. (1967) Zbl0166.04103MR0220785DOI10.1007/BF01109800
- Barnes, D. W., 10.1007/BF01109799, Math. Z. 101 (1967), 343-349. (1967) Zbl0166.04102MR0220784DOI10.1007/BF01109799
- Borel, A., Mostow, G. D., 10.2307/1969807, Ann. Math. (2) 61 (1955), 389-405. (1955) Zbl0066.02401MR0068531DOI10.2307/1969807
- Fan, Y., Guo, X. Y., Shum, K. P., Remarks on two generalizations of normality of subgroups, Chin. Ann. Math. Ser. A 27 (2006), 169-176. (2006) Zbl1109.20017MR2239430
- Graaf, W. A., Lie Algebras: Theory and Algorithms, North-Holland Mathematical Library 56 North-Holland, Amsterdam (2000). (2000) Zbl1122.17300MR1743970
- Guo, X., Wang, J., Shum, K. P., 10.1080/00927870600778381, Comm. Algebra 34 (2006), 3235-3244. (2006) Zbl1106.20013MR2252668DOI10.1080/00927870600778381
- Hallahan, C. B., Overbeck, J., 10.1007/BF01110075, Math. Z. 116 (1970), 215-217. (1970) Zbl0202.04102MR0277580DOI10.1007/BF01110075
- Li, Y., Miao, L., Wang, Y., 10.1080/00927870802465837, Commun. Algebra 37 (2009), 1160-1169. (2009) Zbl1175.20015MR2510976DOI10.1080/00927870802465837
- Salemkar, A. R., Chehrazi, S., Tayanloo, F., 10.1080/00927872.2012.658482, Commun. Algebra 41 (2013), 2310-2316. (2013) Zbl1307.17017MR3225276DOI10.1080/00927872.2012.658482
- Stitzinger, E. L., 10.1112/jlms/2.Part_3.429, J. Lond. Math. Soc. 2 (1970), 429-438. (1970) Zbl0201.03603MR0263885DOI10.1112/jlms/2.Part_3.429
- Stitzinger, E. L., 10.1007/BF01110802, Math. Z. 124 (1972), 237-249. (1972) Zbl0215.38601MR0297829DOI10.1007/BF01110802
- Towers, D., 10.1017/S0013091500016540, Proc. Edinb. Math. Soc. (2) 24 (1981), 217-219. (1981) Zbl0466.17007MR0633723DOI10.1017/S0013091500016540
- Towers, D. A., 10.1080/00927870902829023, Commun. Algebra 37 (2009), 4366-4373. (2009) Zbl1239.17006MR2588856DOI10.1080/00927870902829023
- Towers, D. A., 10.1090/S0002-9939-2015-12533-6, Proc. Am. Math. Soc. 143 (2015), 3377-3385. (2015) MR3348780DOI10.1090/S0002-9939-2015-12533-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.