On convergence of kernel density estimates in particle filtering

David Coufal

Kybernetika (2016)

  • Volume: 52, Issue: 5, page 735-756
  • ISSN: 0023-5954

Abstract

top
The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.

How to cite

top

Coufal, David. "On convergence of kernel density estimates in particle filtering." Kybernetika 52.5 (2016): 735-756. <http://eudml.org/doc/287524>.

@article{Coufal2016,
abstract = {The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.},
author = {Coufal, David},
journal = {Kybernetika},
keywords = {particle filter; kernel methods; Fourier analysis; particle filter; kernel methods; Fourier analysis},
language = {eng},
number = {5},
pages = {735-756},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On convergence of kernel density estimates in particle filtering},
url = {http://eudml.org/doc/287524},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Coufal, David
TI - On convergence of kernel density estimates in particle filtering
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 735
EP - 756
AB - The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.
LA - eng
KW - particle filter; kernel methods; Fourier analysis; particle filter; kernel methods; Fourier analysis
UR - http://eudml.org/doc/287524
ER -

References

top
  1. Brabec, J., Hrůza, B., Matematická analýza II (Mathematical Analysis II, in Czech)., SNTL/ALFA, 1986. 
  2. Crisan, D., Doucet, A., 10.1109/78.984773, IEEE Trans. Signal Processing 50 (2002), 3, 736-746. MR1895071DOI10.1109/78.984773
  3. Crisan, D., Míguez, J., 10.3150/13-bej545, Bernoulli 20 (2014), 4, 1879-1929. Zbl1346.60112MR3263093DOI10.3150/13-bej545
  4. Doucet, A., Freitas, N. de, (Eds.), N. Gordon, 10.1007/978-1-4757-3437-9, Springer-Verlag, New York 2001. Zbl0967.00022MR1847783DOI10.1007/978-1-4757-3437-9
  5. Doucet, A., Johansen, A. M., A tutorial on particle filtering and smoothing: fifteen years later., In: The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.), Oxford University Press, 2011. 
  6. Fristedt, B., Jain, N., Krylov, N., 10.1090/stml/038, American Mathematical Society, 2007. Zbl1165.62070MR2337747DOI10.1090/stml/038
  7. Givens, G. H., 10.1016/0167-7152(94)00205-m, Statist. Probab. Lett. 25 (1995), 55-61. Zbl0838.62026MR1364818DOI10.1016/0167-7152(94)00205-m
  8. Heine, K., Crisan, D., 10.1239/aap/1231340161, Adv. Appl. Probab. 40 (2008), 4, 979-1001. Zbl1155.93039MR2488529DOI10.1239/aap/1231340161
  9. Hürzeler, M., Künsch, H. R., 10.2307/1390812, J. Comput. Graph. Statist. 7 (1998), 2, 175-193. MR1649366DOI10.2307/1390812
  10. Künsch, H. R., 10.1214/009053605000000426, Ann. Statist. 33 (2005), 5, 1983-2021. MR2211077DOI10.1214/009053605000000426
  11. Gland, F. Le, Oudjane, N., 10.1214/aoap/1075828050, Ann. Appl. Probab. 14 (2004), 1, 144-187. Zbl1060.93094MR2023019DOI10.1214/aoap/1075828050
  12. Moral, P. Del, Guionnet, A., 10.1016/s0246-0203(00)01064-5, Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 37 (2001), 2, 155-194. MR1819122DOI10.1016/s0246-0203(00)01064-5
  13. Musso, C., Oudjane, N., Gland, F. Le, 10.1007/978-1-4757-3437-9_12, In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.), Chapter 12, Springer 2001, pp. 247-272. Zbl1056.93588MR1847795DOI10.1007/978-1-4757-3437-9_12
  14. Parzen, E., 10.1214/aoms/1177704472, Ann. Math. Statist. 33 (1962), 3, 1065-1076. Zbl0116.11302MR0143282DOI10.1214/aoms/1177704472
  15. Särkkä, S., Bayesian Filtering and Smoothing., Cambridge University Press, 2013. Zbl1274.62021MR3154309
  16. Silverman, B. W., 10.1007/978-1-4899-3324-9, Chapman and Hall/CRC, London, New York 1986. Zbl0617.62042MR0848134DOI10.1007/978-1-4899-3324-9
  17. Tsybakov, A. B., 10.1007/b13794, Springer, 2009. Zbl1176.62032MR2724359DOI10.1007/b13794
  18. Wand, M. P., Jones, M. C., 10.1007/978-1-4899-4493-1, Chapman and Hall/CRC, London, New York 1995. Zbl0854.62043MR1319818DOI10.1007/978-1-4899-4493-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.