On convergence of kernel density estimates in particle filtering
Kybernetika (2016)
- Volume: 52, Issue: 5, page 735-756
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCoufal, David. "On convergence of kernel density estimates in particle filtering." Kybernetika 52.5 (2016): 735-756. <http://eudml.org/doc/287524>.
@article{Coufal2016,
abstract = {The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.},
author = {Coufal, David},
journal = {Kybernetika},
keywords = {particle filter; kernel methods; Fourier analysis; particle filter; kernel methods; Fourier analysis},
language = {eng},
number = {5},
pages = {735-756},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On convergence of kernel density estimates in particle filtering},
url = {http://eudml.org/doc/287524},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Coufal, David
TI - On convergence of kernel density estimates in particle filtering
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 735
EP - 756
AB - The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.
LA - eng
KW - particle filter; kernel methods; Fourier analysis; particle filter; kernel methods; Fourier analysis
UR - http://eudml.org/doc/287524
ER -
References
top- Brabec, J., Hrůza, B., Matematická analýza II (Mathematical Analysis II, in Czech)., SNTL/ALFA, 1986.
- Crisan, D., Doucet, A., 10.1109/78.984773, IEEE Trans. Signal Processing 50 (2002), 3, 736-746. MR1895071DOI10.1109/78.984773
- Crisan, D., Míguez, J., 10.3150/13-bej545, Bernoulli 20 (2014), 4, 1879-1929. Zbl1346.60112MR3263093DOI10.3150/13-bej545
- Doucet, A., Freitas, N. de, (Eds.), N. Gordon, 10.1007/978-1-4757-3437-9, Springer-Verlag, New York 2001. Zbl0967.00022MR1847783DOI10.1007/978-1-4757-3437-9
- Doucet, A., Johansen, A. M., A tutorial on particle filtering and smoothing: fifteen years later., In: The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.), Oxford University Press, 2011.
- Fristedt, B., Jain, N., Krylov, N., 10.1090/stml/038, American Mathematical Society, 2007. Zbl1165.62070MR2337747DOI10.1090/stml/038
- Givens, G. H., 10.1016/0167-7152(94)00205-m, Statist. Probab. Lett. 25 (1995), 55-61. Zbl0838.62026MR1364818DOI10.1016/0167-7152(94)00205-m
- Heine, K., Crisan, D., 10.1239/aap/1231340161, Adv. Appl. Probab. 40 (2008), 4, 979-1001. Zbl1155.93039MR2488529DOI10.1239/aap/1231340161
- Hürzeler, M., Künsch, H. R., 10.2307/1390812, J. Comput. Graph. Statist. 7 (1998), 2, 175-193. MR1649366DOI10.2307/1390812
- Künsch, H. R., 10.1214/009053605000000426, Ann. Statist. 33 (2005), 5, 1983-2021. MR2211077DOI10.1214/009053605000000426
- Gland, F. Le, Oudjane, N., 10.1214/aoap/1075828050, Ann. Appl. Probab. 14 (2004), 1, 144-187. Zbl1060.93094MR2023019DOI10.1214/aoap/1075828050
- Moral, P. Del, Guionnet, A., 10.1016/s0246-0203(00)01064-5, Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 37 (2001), 2, 155-194. MR1819122DOI10.1016/s0246-0203(00)01064-5
- Musso, C., Oudjane, N., Gland, F. Le, 10.1007/978-1-4757-3437-9_12, In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.), Chapter 12, Springer 2001, pp. 247-272. Zbl1056.93588MR1847795DOI10.1007/978-1-4757-3437-9_12
- Parzen, E., 10.1214/aoms/1177704472, Ann. Math. Statist. 33 (1962), 3, 1065-1076. Zbl0116.11302MR0143282DOI10.1214/aoms/1177704472
- Särkkä, S., Bayesian Filtering and Smoothing., Cambridge University Press, 2013. Zbl1274.62021MR3154309
- Silverman, B. W., 10.1007/978-1-4899-3324-9, Chapman and Hall/CRC, London, New York 1986. Zbl0617.62042MR0848134DOI10.1007/978-1-4899-3324-9
- Tsybakov, A. B., 10.1007/b13794, Springer, 2009. Zbl1176.62032MR2724359DOI10.1007/b13794
- Wand, M. P., Jones, M. C., 10.1007/978-1-4899-4493-1, Chapman and Hall/CRC, London, New York 1995. Zbl0854.62043MR1319818DOI10.1007/978-1-4899-4493-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.