-cocycles on the group of contactomorphisms on the supercircle generalizing the Schwarzian derivative
Boujemaa Agrebaoui; Raja Hattab
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 4, page 1143-1163
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAgrebaoui, Boujemaa, and Hattab, Raja. "$1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative." Czechoslovak Mathematical Journal 66.4 (2016): 1143-1163. <http://eudml.org/doc/287534>.
@article{Agrebaoui2016,
abstract = {The relative cohomology $\{\rm H\}^1_\{\rm diff\}(\mathbb \{K\}(1|3),\mathfrak \{osp\}(2,3);\{\mathcal \{D\}\}_\{\lambda ,\mu \}(S^\{1|3\}))$ of the contact Lie superalgebra $\mathbb \{K\}(1|3)$ with coefficients in the space of differential operators $\{\mathcal \{D\}\}_\{\lambda ,\mu \}(S^\{1|3\})$ acting on tensor densities on $S^\{1|3\}$, is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^\{1/2\}$, $X_f\in \mathbb \{K\}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak \{osp\}(2,3)$ of $\mathbb \{K\}(1|3)$. In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms $\{\mathcal \{K\}\}(1|3)$ on the supercircle $S^\{1|3\}$ generating the relative cohomology $\{\rm H\}^1_\{\rm diff\}(\{\mathcal \{K\}\}(1|3)$, $\{\rm PC\}(2,3)$; $\{\mathcal \{D\}\}_\{\{\lambda \},\mu \}(S^\{1|3\})$ with coefficients in $\{\mathcal \{D\}\}_\{\{\lambda \},\mu \}(S^\{1|3\})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_\{3\}(\Phi )=E_\{\Phi \}^\{-1\}(D_\{1\}(D_\{2\}),D_\{3\})\alpha _\{3\}^\{1/2\}$, $\Phi \in \{\mathcal \{K\}\}(1|3)$ introduced by Radul which is invariant with respect to the conformal group $\{\rm PC\}(2,3)$ of $\{\mathcal \{K\}\}(1|3)$. These cocycles are expressed in terms of $S_\{3\}(\Phi )$ and possess its properties.},
author = {Agrebaoui, Boujemaa, Hattab, Raja},
journal = {Czechoslovak Mathematical Journal},
keywords = {contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator; contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator},
language = {eng},
number = {4},
pages = {1143-1163},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$1$-cocycles on the group of contactomorphisms on the supercircle $S^\{1|3\}$ generalizing the Schwarzian derivative},
url = {http://eudml.org/doc/287534},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Agrebaoui, Boujemaa
AU - Hattab, Raja
TI - $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1143
EP - 1163
AB - The relative cohomology ${\rm H}^1_{\rm diff}(\mathbb {K}(1|3),\mathfrak {osp}(2,3);{\mathcal {D}}_{\lambda ,\mu }(S^{1|3}))$ of the contact Lie superalgebra $\mathbb {K}(1|3)$ with coefficients in the space of differential operators ${\mathcal {D}}_{\lambda ,\mu }(S^{1|3})$ acting on tensor densities on $S^{1|3}$, is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^{1/2}$, $X_f\in \mathbb {K}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak {osp}(2,3)$ of $\mathbb {K}(1|3)$. In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms ${\mathcal {K}}(1|3)$ on the supercircle $S^{1|3}$ generating the relative cohomology ${\rm H}^1_{\rm diff}({\mathcal {K}}(1|3)$, ${\rm PC}(2,3)$; ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$ with coefficients in ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_{3}(\Phi )=E_{\Phi }^{-1}(D_{1}(D_{2}),D_{3})\alpha _{3}^{1/2}$, $\Phi \in {\mathcal {K}}(1|3)$ introduced by Radul which is invariant with respect to the conformal group ${\rm PC}(2,3)$ of ${\mathcal {K}}(1|3)$. These cocycles are expressed in terms of $S_{3}(\Phi )$ and possess its properties.
LA - eng
KW - contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator; contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator
UR - http://eudml.org/doc/287534
ER -
References
top- Agrebaoui, B., Dammak, O., Mansour, S., 10.1016/j.geomphys.2013.10.003, J. Geom. Phys. 75 (2014), 230-247. (2014) MR3126945DOI10.1016/j.geomphys.2013.10.003
- Agrebaoui, B., Mansour, S., 10.1080/00927870903357735, Comm. Algebra 38 (2010), 382-404. (2010) Zbl1191.17005MR2597503DOI10.1080/00927870903357735
- Basdouri, I., Ammar, M. Ben, Fraj, N. Ben, Boujelbane, M., Kammoun, K., 10.1142/S1402925109000431, J. Nonlinear Math. Phys. 16 (2009), 373-409. (2009) MR2606126DOI10.1142/S1402925109000431
- Fraj, N. Ben, 10.1007/s11005-008-0283-2, Lett. Math. Phys. 86 (2008), 159-175. (2008) MR2465752DOI10.1007/s11005-008-0283-2
- Fraj, N. Ben, Laraied, I., Omri, S., Supertransvectants, cohomology and deformations, J. Math. Phys. 54 (2013), 023501, 19 pages. (2013) MR3076388
- Bernstein, J., Leites, D., Molotkov, V., Shander, V., Seminar on Supersymmetry (v. 1. Algebra and Calcuculus: Main chapters), D. Leites Moscow Center for Continuous Mathematical Education Moskva (2011), Russian. (2011)
- Bouarroudj, S., 10.1016/S0019-3577(04)80002-8, Indag. Math. 15 (2004), 321-338. (2004) Zbl1064.53060MR2093162DOI10.1016/S0019-3577(04)80002-8
- Bouarroudj, S., Ovsienko, V., 10.1155/S1073792898000038, Int. Math. Res. Not. 1998 (1998), 25-39. (1998) Zbl0919.57026MR1601874DOI10.1155/S1073792898000038
- Bouarroudj, S., Ovsienko, V., Riemannian curl in contact geometry, Int. Math. Res. Not. 12 (2015), 3917-3942. (2015) Zbl1330.53105MR3356744
- Cartan, É., Leçons sur la Théorie des Espaces à Connexion Projective, French Paris Gauthier-Villars (Cahiers scientifiques, fasc. XVII) (1937). (1937) Zbl0016.07603
- Conley, C. H., Conformal symbols and the action of contact vector fields over the superline, J. Reine Angew. Math. 633 (2009), 115-163. (2009) Zbl1248.17017MR2561198
- Fuks, D. B., Cohomology of Infinite-Dimensional Lie Algebras, Contemporary Soviet Mathematics Consultants Bureau, New York (1986). (1986) Zbl0667.17005MR0874337
- Gargoubi, H., Mellouli, N., Ovsienko, V., 10.1007/s11005-006-0129-8, Lett. Math. Phys. (2007), 79 51-65. (2007) Zbl1112.53066MR2290336DOI10.1007/s11005-006-0129-8
- Gargoubi, H., Ovsienko, V., Supertransvectants and symplectic geometry, Int. Math. Res. Notices 2008 Article ID rnn021, 19 pages (2008). (2008) Zbl1144.53100MR2429252
- Lecomte, P. B. A., Ovsienko, V. Yu., 10.1023/A:1007662702470, Lett. Math. Phys. 49 (1999), 173-196. (1999) Zbl0989.17015MR1743456DOI10.1023/A:1007662702470
- Manin, Yu. I., Gauge Fields and Complex Geometry, Nauka Moskva (1984), Russian. (1984) Zbl0576.53002MR0787979
- Michel, J.-P., Duval, C., On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative, Int. Math. Res. Not. 2008 (2008), Article ID rnn054, 47 pages. (2008) Zbl1145.53005MR2440332
- Ovsienko, V., 10.5802/afst.758, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 2 6 (1993), 73-96. (1993) Zbl0780.34004MR1230706DOI10.5802/afst.758
- Ovsienko, V., Tabachnikov, S., Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups, Cambridge Tracts in Mathematics 165 Cambridge University Press, Cambridge (2005). (2005) Zbl1073.53001MR2177471
- Radul, A. O., Superstring Schwarz derivative and Bott cocycles, Integrable and Superintegrable Systems 336-351 World. Sci. Publ. Teaneck B. Kupershmidt (1990). (1990) MR1091271
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.