1 -cocycles on the group of contactomorphisms on the supercircle S 1 | 3 generalizing the Schwarzian derivative

Boujemaa Agrebaoui; Raja Hattab

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 4, page 1143-1163
  • ISSN: 0011-4642

Abstract

top
The relative cohomology H diff 1 ( 𝕂 ( 1 | 3 ) , 𝔬𝔰𝔭 ( 2 , 3 ) ; 𝒟 λ , μ ( S 1 | 3 ) ) of the contact Lie superalgebra 𝕂 ( 1 | 3 ) with coefficients in the space of differential operators 𝒟 λ , μ ( S 1 | 3 ) acting on tensor densities on S 1 | 3 , is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating 1 -cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative 1 -cocycle s ( X f ) = D 1 D 2 D 3 ( f ) α 3 1 / 2 , X f 𝕂 ( 1 | 3 ) which is invariant with respect to the conformal subsuperalgebra 𝔬𝔰𝔭 ( 2 , 3 ) of 𝕂 ( 1 | 3 ) . In this work we study the supergroup case. We give an explicit construction of 1 -cocycles of the group of contactomorphisms 𝒦 ( 1 | 3 ) on the supercircle S 1 | 3 generating the relative cohomology H diff 1 ( 𝒦 ( 1 | 3 ) , PC ( 2 , 3 ) ; 𝒟 λ , μ ( S 1 | 3 ) with coefficients in 𝒟 λ , μ ( S 1 | 3 ) . We show that they possess properties similar to those of the super-Schwarzian derivative 1 -cocycle S 3 ( Φ ) = E Φ - 1 ( D 1 ( D 2 ) , D 3 ) α 3 1 / 2 , Φ 𝒦 ( 1 | 3 ) introduced by Radul which is invariant with respect to the conformal group PC ( 2 , 3 ) of 𝒦 ( 1 | 3 ) . These cocycles are expressed in terms of S 3 ( Φ ) and possess its properties.

How to cite

top

Agrebaoui, Boujemaa, and Hattab, Raja. "$1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative." Czechoslovak Mathematical Journal 66.4 (2016): 1143-1163. <http://eudml.org/doc/287534>.

@article{Agrebaoui2016,
abstract = {The relative cohomology $\{\rm H\}^1_\{\rm diff\}(\mathbb \{K\}(1|3),\mathfrak \{osp\}(2,3);\{\mathcal \{D\}\}_\{\lambda ,\mu \}(S^\{1|3\}))$ of the contact Lie superalgebra $\mathbb \{K\}(1|3)$ with coefficients in the space of differential operators $\{\mathcal \{D\}\}_\{\lambda ,\mu \}(S^\{1|3\})$ acting on tensor densities on $S^\{1|3\}$, is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^\{1/2\}$, $X_f\in \mathbb \{K\}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak \{osp\}(2,3)$ of $\mathbb \{K\}(1|3)$. In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms $\{\mathcal \{K\}\}(1|3)$ on the supercircle $S^\{1|3\}$ generating the relative cohomology $\{\rm H\}^1_\{\rm diff\}(\{\mathcal \{K\}\}(1|3)$, $\{\rm PC\}(2,3)$; $\{\mathcal \{D\}\}_\{\{\lambda \},\mu \}(S^\{1|3\})$ with coefficients in $\{\mathcal \{D\}\}_\{\{\lambda \},\mu \}(S^\{1|3\})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_\{3\}(\Phi )=E_\{\Phi \}^\{-1\}(D_\{1\}(D_\{2\}),D_\{3\})\alpha _\{3\}^\{1/2\}$, $\Phi \in \{\mathcal \{K\}\}(1|3)$ introduced by Radul which is invariant with respect to the conformal group $\{\rm PC\}(2,3)$ of $\{\mathcal \{K\}\}(1|3)$. These cocycles are expressed in terms of $S_\{3\}(\Phi )$ and possess its properties.},
author = {Agrebaoui, Boujemaa, Hattab, Raja},
journal = {Czechoslovak Mathematical Journal},
keywords = {contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator; contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator},
language = {eng},
number = {4},
pages = {1143-1163},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$1$-cocycles on the group of contactomorphisms on the supercircle $S^\{1|3\}$ generalizing the Schwarzian derivative},
url = {http://eudml.org/doc/287534},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Agrebaoui, Boujemaa
AU - Hattab, Raja
TI - $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1143
EP - 1163
AB - The relative cohomology ${\rm H}^1_{\rm diff}(\mathbb {K}(1|3),\mathfrak {osp}(2,3);{\mathcal {D}}_{\lambda ,\mu }(S^{1|3}))$ of the contact Lie superalgebra $\mathbb {K}(1|3)$ with coefficients in the space of differential operators ${\mathcal {D}}_{\lambda ,\mu }(S^{1|3})$ acting on tensor densities on $S^{1|3}$, is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^{1/2}$, $X_f\in \mathbb {K}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak {osp}(2,3)$ of $\mathbb {K}(1|3)$. In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms ${\mathcal {K}}(1|3)$ on the supercircle $S^{1|3}$ generating the relative cohomology ${\rm H}^1_{\rm diff}({\mathcal {K}}(1|3)$, ${\rm PC}(2,3)$; ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$ with coefficients in ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_{3}(\Phi )=E_{\Phi }^{-1}(D_{1}(D_{2}),D_{3})\alpha _{3}^{1/2}$, $\Phi \in {\mathcal {K}}(1|3)$ introduced by Radul which is invariant with respect to the conformal group ${\rm PC}(2,3)$ of ${\mathcal {K}}(1|3)$. These cocycles are expressed in terms of $S_{3}(\Phi )$ and possess its properties.
LA - eng
KW - contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator; contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator
UR - http://eudml.org/doc/287534
ER -

References

top
  1. Agrebaoui, B., Dammak, O., Mansour, S., 10.1016/j.geomphys.2013.10.003, J. Geom. Phys. 75 (2014), 230-247. (2014) MR3126945DOI10.1016/j.geomphys.2013.10.003
  2. Agrebaoui, B., Mansour, S., 10.1080/00927870903357735, Comm. Algebra 38 (2010), 382-404. (2010) Zbl1191.17005MR2597503DOI10.1080/00927870903357735
  3. Basdouri, I., Ammar, M. Ben, Fraj, N. Ben, Boujelbane, M., Kammoun, K., 10.1142/S1402925109000431, J. Nonlinear Math. Phys. 16 (2009), 373-409. (2009) MR2606126DOI10.1142/S1402925109000431
  4. Fraj, N. Ben, 10.1007/s11005-008-0283-2, Lett. Math. Phys. 86 (2008), 159-175. (2008) MR2465752DOI10.1007/s11005-008-0283-2
  5. Fraj, N. Ben, Laraied, I., Omri, S., Supertransvectants, cohomology and deformations, J. Math. Phys. 54 (2013), 023501, 19 pages. (2013) MR3076388
  6. Bernstein, J., Leites, D., Molotkov, V., Shander, V., Seminar on Supersymmetry (v. 1. Algebra and Calcuculus: Main chapters), D. Leites Moscow Center for Continuous Mathematical Education Moskva (2011), Russian. (2011) 
  7. Bouarroudj, S., 10.1016/S0019-3577(04)80002-8, Indag. Math. 15 (2004), 321-338. (2004) Zbl1064.53060MR2093162DOI10.1016/S0019-3577(04)80002-8
  8. Bouarroudj, S., Ovsienko, V., 10.1155/S1073792898000038, Int. Math. Res. Not. 1998 (1998), 25-39. (1998) Zbl0919.57026MR1601874DOI10.1155/S1073792898000038
  9. Bouarroudj, S., Ovsienko, V., Riemannian curl in contact geometry, Int. Math. Res. Not. 12 (2015), 3917-3942. (2015) Zbl1330.53105MR3356744
  10. Cartan, É., Leçons sur la Théorie des Espaces à Connexion Projective, French Paris Gauthier-Villars (Cahiers scientifiques, fasc. XVII) (1937). (1937) Zbl0016.07603
  11. Conley, C. H., Conformal symbols and the action of contact vector fields over the superline, J. Reine Angew. Math. 633 (2009), 115-163. (2009) Zbl1248.17017MR2561198
  12. Fuks, D. B., Cohomology of Infinite-Dimensional Lie Algebras, Contemporary Soviet Mathematics Consultants Bureau, New York (1986). (1986) Zbl0667.17005MR0874337
  13. Gargoubi, H., Mellouli, N., Ovsienko, V., 10.1007/s11005-006-0129-8, Lett. Math. Phys. (2007), 79 51-65. (2007) Zbl1112.53066MR2290336DOI10.1007/s11005-006-0129-8
  14. Gargoubi, H., Ovsienko, V., Supertransvectants and symplectic geometry, Int. Math. Res. Notices 2008 Article ID rnn021, 19 pages (2008). (2008) Zbl1144.53100MR2429252
  15. Lecomte, P. B. A., Ovsienko, V. Yu., 10.1023/A:1007662702470, Lett. Math. Phys. 49 (1999), 173-196. (1999) Zbl0989.17015MR1743456DOI10.1023/A:1007662702470
  16. Manin, Yu. I., Gauge Fields and Complex Geometry, Nauka Moskva (1984), Russian. (1984) Zbl0576.53002MR0787979
  17. Michel, J.-P., Duval, C., On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative, Int. Math. Res. Not. 2008 (2008), Article ID rnn054, 47 pages. (2008) Zbl1145.53005MR2440332
  18. Ovsienko, V., 10.5802/afst.758, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 2 6 (1993), 73-96. (1993) Zbl0780.34004MR1230706DOI10.5802/afst.758
  19. Ovsienko, V., Tabachnikov, S., Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups, Cambridge Tracts in Mathematics 165 Cambridge University Press, Cambridge (2005). (2005) Zbl1073.53001MR2177471
  20. Radul, A. O., Superstring Schwarz derivative and Bott cocycles, Integrable and Superintegrable Systems 336-351 World. Sci. Publ. Teaneck B. Kupershmidt (1990). (1990) MR1091271

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.