A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations

Yun-Bo Yang; Qiong-Xiang Kong

Applications of Mathematics (2017)

  • Volume: 62, Issue: 1, page 75-100
  • ISSN: 0862-7940

Abstract

top
A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the new error correction algorithm are established. Numerical examples are also presented to verify the theoretical analysis and demonstrate the efficiency of the proposed method.

How to cite

top

Yang, Yun-Bo, and Kong, Qiong-Xiang. "A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations." Applications of Mathematics 62.1 (2017): 75-100. <http://eudml.org/doc/287557>.

@article{Yang2017,
abstract = {A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the new error correction algorithm are established. Numerical examples are also presented to verify the theoretical analysis and demonstrate the efficiency of the proposed method.},
author = {Yang, Yun-Bo, Kong, Qiong-Xiang},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes equation; finite element method; variational multiscale; two local Gauss integrations; error correction method},
language = {eng},
number = {1},
pages = {75-100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations},
url = {http://eudml.org/doc/287557},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Yang, Yun-Bo
AU - Kong, Qiong-Xiang
TI - A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 75
EP - 100
AB - A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the new error correction algorithm are established. Numerical examples are also presented to verify the theoretical analysis and demonstrate the efficiency of the proposed method.
LA - eng
KW - Navier-Stokes equation; finite element method; variational multiscale; two local Gauss integrations; error correction method
UR - http://eudml.org/doc/287557
ER -

References

top
  1. Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15, Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
  2. Erturk, E., Corke, T. C., Gökçöl, C., 10.1002/fld.953, Int. J. Numer. Methods Fluids 48 (2005), 747-774. (2005) Zbl1071.76038DOI10.1002/fld.953
  3. Ervin, V. J., Layton, W. J., Maubach, J. M., 10.1137/S0036142997318164, SIAM J. Numer. Anal. 37 (2000), 1165-1185. (2000) Zbl1049.76038MR1756420DOI10.1137/S0036142997318164
  4. Gartling, D. K., 10.1002/fld.1650110704, Int. J. Numer. Methods Fluids 11 (1990), 953-967. (1990) DOI10.1002/fld.1650110704
  5. Ghia, U., Ghia, K. N., Shin, C. T., 10.1016/0021-9991(82)90058-4, J. Comput. Phys. 48 (1982), 387-411. (1982) Zbl0511.76031DOI10.1016/0021-9991(82)90058-4
  6. Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5, Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
  7. Gresho, P. M., Lee, R. L., Chan, S. T., Sani, R. L., 10.1007/BFb0086908, Approximation Methods for Navier-Stokes Problems, Proc. Symp. IUTAM, Paderborn 1979 Lect. Notes in Math. 771, Springer, Berlin (1980), 203-222. (1980) Zbl0428.76026MR0565998DOI10.1007/BFb0086908
  8. Guermond, J.-L., Marra, A., Quartapelle, L., 10.1016/j.cma.2005.08.016, Comput. Methods Appl. Mech. Eng. 195 (2006), 5857-5876. (2006) Zbl1121.76036MR2250923DOI10.1016/j.cma.2005.08.016
  9. Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms, Computer Science and Scientific Computing, Academic Press, Boston (1989). (1989) Zbl0697.76031MR1017032
  10. He, Y., Li, J., 10.1016/j.cma.2008.12.001, Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. (2009) Zbl1227.76031MR2497612DOI10.1016/j.cma.2008.12.001
  11. He, Y., Wang, A., Mei, L., 10.1007/s10665-004-3718-5, J. Eng. Math. 51 (2005), 367-380. (2005) Zbl1069.76031MR2146399DOI10.1007/s10665-004-3718-5
  12. Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-265. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
  13. Huang, P., Feng, X., He, Y., 10.1016/j.apm.2012.02.051, Appl. Math. Modelling 37 (2013), 728-741. (2013) Zbl1351.76060MR3002184DOI10.1016/j.apm.2012.02.051
  14. Huang, P., He, Y., Feng, X., 10.1002/mma.1618, Math. Methods Appl. Sci. 35 (2012), 1033-1046. (2012) Zbl1246.76054MR2931209DOI10.1002/mma.1618
  15. Hughes, T. J. R., Mazzei, L., Jansen, K. E., 10.1007/s007910050051, Comput. Vis. Sci. 3 (2000), 47-59. (2000) Zbl0998.76040DOI10.1007/s007910050051
  16. John, V., Kaya, S., 10.1137/030601533, SIAM J. Sci. Comput. 26 (2005), 1485-1503. (2005) Zbl1073.76054MR2142582DOI10.1137/030601533
  17. Kaya, S., Rivière, B., 10.1002/num.20120, Numer. Methods Partial Differ. Equations 22 (2006), 728-743. (2006) Zbl1089.76034MR2212234DOI10.1002/num.20120
  18. Labovschii, A., 10.1002/num.20329, Numer. Methods Partial Differ. Equations 25 (2009), 1-25. (2009) Zbl05490411MR2473678DOI10.1002/num.20329
  19. Layton, W., 10.1016/S0096-3003(01)00228-4, Appl. Math. Comput. 133 (2002), 147-157. (2002) Zbl1024.76026MR1923189DOI10.1016/S0096-3003(01)00228-4
  20. Layton, W., Lee, H. K., Peterson, J., 10.1016/S0096-3003(01)00026-1, Appl. Math. Comput. 129 (2002), 1-19. (2002) Zbl1074.76033MR1897318DOI10.1016/S0096-3003(01)00026-1
  21. Li, J., He, Y., 10.1016/j.cam.2007.02.015, J. Comput. Appl. Math. 214 (2008), 58-65. (2008) Zbl1132.35436MR2391672DOI10.1016/j.cam.2007.02.015
  22. Li, Y., Mei, L., Li, Y., Zhao, K., 10.1002/num.21785, Numer. Methods Partial Differ. Equations 29 (2013), 1986-2003. (2013) Zbl1277.76019MR3116554DOI10.1002/num.21785
  23. Liu, Q., Hou, Y., 10.1017/S0004972709000859, Bull. Aust. Math. Soc. 81 (2010), 442-454. (2010) Zbl05712510MR2639859DOI10.1017/S0004972709000859
  24. Melhem, H. G., Finite element approximation to heat transfer through construction glass blocks, Mechanics Computing in 1990's and Beyond American Society of Civil Engineers (1991), 193-197. (1991) 
  25. Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications 2, North-Holland, Amsterdam (1984). (1984) Zbl0568.35002MR0769654
  26. Wang, K., Wong, Y. S., 10.1016/j.jcp.2013.07.042, J. Comput. Phys. 255 (2013), 245-265. (2013) Zbl1349.76281MR3109787DOI10.1016/j.jcp.2013.07.042
  27. Wong, K. L., Baker, A. J., 10.1002/fld.204, Int. J. Numer. Methods Fluids 38 (2002), 99-123. (2002) Zbl1009.76059DOI10.1002/fld.204
  28. Zheng, H., Hou, Y., Shi, F., Song, L., 10.1016/j.jcp.2009.05.006, J. Comput. Phys. 228 (2009), 5961-5977. (2009) Zbl1168.76028MR2542923DOI10.1016/j.jcp.2009.05.006
  29. Zienkiewicz, O. C., Taylor, R. L., 10.1016/B978-075066431-8.50166-1, Elsevier/Butterworth Heinemann, Amsterdam (2005). (2005) Zbl1084.74001MR3292651DOI10.1016/B978-075066431-8.50166-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.