A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations
Applications of Mathematics (2017)
- Volume: 62, Issue: 1, page 75-100
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYang, Yun-Bo, and Kong, Qiong-Xiang. "A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations." Applications of Mathematics 62.1 (2017): 75-100. <http://eudml.org/doc/287557>.
@article{Yang2017,
abstract = {A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the new error correction algorithm are established. Numerical examples are also presented to verify the theoretical analysis and demonstrate the efficiency of the proposed method.},
author = {Yang, Yun-Bo, Kong, Qiong-Xiang},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes equation; finite element method; variational multiscale; two local Gauss integrations; error correction method},
language = {eng},
number = {1},
pages = {75-100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations},
url = {http://eudml.org/doc/287557},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Yang, Yun-Bo
AU - Kong, Qiong-Xiang
TI - A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 75
EP - 100
AB - A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the new error correction algorithm are established. Numerical examples are also presented to verify the theoretical analysis and demonstrate the efficiency of the proposed method.
LA - eng
KW - Navier-Stokes equation; finite element method; variational multiscale; two local Gauss integrations; error correction method
UR - http://eudml.org/doc/287557
ER -
References
top- Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15, Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
- Erturk, E., Corke, T. C., Gökçöl, C., 10.1002/fld.953, Int. J. Numer. Methods Fluids 48 (2005), 747-774. (2005) Zbl1071.76038DOI10.1002/fld.953
- Ervin, V. J., Layton, W. J., Maubach, J. M., 10.1137/S0036142997318164, SIAM J. Numer. Anal. 37 (2000), 1165-1185. (2000) Zbl1049.76038MR1756420DOI10.1137/S0036142997318164
- Gartling, D. K., 10.1002/fld.1650110704, Int. J. Numer. Methods Fluids 11 (1990), 953-967. (1990) DOI10.1002/fld.1650110704
- Ghia, U., Ghia, K. N., Shin, C. T., 10.1016/0021-9991(82)90058-4, J. Comput. Phys. 48 (1982), 387-411. (1982) Zbl0511.76031DOI10.1016/0021-9991(82)90058-4
- Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5, Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
- Gresho, P. M., Lee, R. L., Chan, S. T., Sani, R. L., 10.1007/BFb0086908, Approximation Methods for Navier-Stokes Problems, Proc. Symp. IUTAM, Paderborn 1979 Lect. Notes in Math. 771, Springer, Berlin (1980), 203-222. (1980) Zbl0428.76026MR0565998DOI10.1007/BFb0086908
- Guermond, J.-L., Marra, A., Quartapelle, L., 10.1016/j.cma.2005.08.016, Comput. Methods Appl. Mech. Eng. 195 (2006), 5857-5876. (2006) Zbl1121.76036MR2250923DOI10.1016/j.cma.2005.08.016
- Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms, Computer Science and Scientific Computing, Academic Press, Boston (1989). (1989) Zbl0697.76031MR1017032
- He, Y., Li, J., 10.1016/j.cma.2008.12.001, Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. (2009) Zbl1227.76031MR2497612DOI10.1016/j.cma.2008.12.001
- He, Y., Wang, A., Mei, L., 10.1007/s10665-004-3718-5, J. Eng. Math. 51 (2005), 367-380. (2005) Zbl1069.76031MR2146399DOI10.1007/s10665-004-3718-5
- Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-265. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
- Huang, P., Feng, X., He, Y., 10.1016/j.apm.2012.02.051, Appl. Math. Modelling 37 (2013), 728-741. (2013) Zbl1351.76060MR3002184DOI10.1016/j.apm.2012.02.051
- Huang, P., He, Y., Feng, X., 10.1002/mma.1618, Math. Methods Appl. Sci. 35 (2012), 1033-1046. (2012) Zbl1246.76054MR2931209DOI10.1002/mma.1618
- Hughes, T. J. R., Mazzei, L., Jansen, K. E., 10.1007/s007910050051, Comput. Vis. Sci. 3 (2000), 47-59. (2000) Zbl0998.76040DOI10.1007/s007910050051
- John, V., Kaya, S., 10.1137/030601533, SIAM J. Sci. Comput. 26 (2005), 1485-1503. (2005) Zbl1073.76054MR2142582DOI10.1137/030601533
- Kaya, S., Rivière, B., 10.1002/num.20120, Numer. Methods Partial Differ. Equations 22 (2006), 728-743. (2006) Zbl1089.76034MR2212234DOI10.1002/num.20120
- Labovschii, A., 10.1002/num.20329, Numer. Methods Partial Differ. Equations 25 (2009), 1-25. (2009) Zbl05490411MR2473678DOI10.1002/num.20329
- Layton, W., 10.1016/S0096-3003(01)00228-4, Appl. Math. Comput. 133 (2002), 147-157. (2002) Zbl1024.76026MR1923189DOI10.1016/S0096-3003(01)00228-4
- Layton, W., Lee, H. K., Peterson, J., 10.1016/S0096-3003(01)00026-1, Appl. Math. Comput. 129 (2002), 1-19. (2002) Zbl1074.76033MR1897318DOI10.1016/S0096-3003(01)00026-1
- Li, J., He, Y., 10.1016/j.cam.2007.02.015, J. Comput. Appl. Math. 214 (2008), 58-65. (2008) Zbl1132.35436MR2391672DOI10.1016/j.cam.2007.02.015
- Li, Y., Mei, L., Li, Y., Zhao, K., 10.1002/num.21785, Numer. Methods Partial Differ. Equations 29 (2013), 1986-2003. (2013) Zbl1277.76019MR3116554DOI10.1002/num.21785
- Liu, Q., Hou, Y., 10.1017/S0004972709000859, Bull. Aust. Math. Soc. 81 (2010), 442-454. (2010) Zbl05712510MR2639859DOI10.1017/S0004972709000859
- Melhem, H. G., Finite element approximation to heat transfer through construction glass blocks, Mechanics Computing in 1990's and Beyond American Society of Civil Engineers (1991), 193-197. (1991)
- Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications 2, North-Holland, Amsterdam (1984). (1984) Zbl0568.35002MR0769654
- Wang, K., Wong, Y. S., 10.1016/j.jcp.2013.07.042, J. Comput. Phys. 255 (2013), 245-265. (2013) Zbl1349.76281MR3109787DOI10.1016/j.jcp.2013.07.042
- Wong, K. L., Baker, A. J., 10.1002/fld.204, Int. J. Numer. Methods Fluids 38 (2002), 99-123. (2002) Zbl1009.76059DOI10.1002/fld.204
- Zheng, H., Hou, Y., Shi, F., Song, L., 10.1016/j.jcp.2009.05.006, J. Comput. Phys. 228 (2009), 5961-5977. (2009) Zbl1168.76028MR2542923DOI10.1016/j.jcp.2009.05.006
- Zienkiewicz, O. C., Taylor, R. L., 10.1016/B978-075066431-8.50166-1, Elsevier/Butterworth Heinemann, Amsterdam (2005). (2005) Zbl1084.74001MR3292651DOI10.1016/B978-075066431-8.50166-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.