Quantum idempotence, distributivity, and the Yang-Baxter equation
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 4, page 567-583
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSmith, J. D. H.. "Quantum idempotence, distributivity, and the Yang-Baxter equation." Commentationes Mathematicae Universitatis Carolinae 57.4 (2016): 567-583. <http://eudml.org/doc/287558>.
@article{Smith2016,
abstract = {Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.},
author = {Smith, J. D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hopf algebra; quantum group; quasigroup; loop; quantum Yang-Baxter equation; distributive},
language = {eng},
number = {4},
pages = {567-583},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quantum idempotence, distributivity, and the Yang-Baxter equation},
url = {http://eudml.org/doc/287558},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Smith, J. D. H.
TI - Quantum idempotence, distributivity, and the Yang-Baxter equation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 4
SP - 567
EP - 583
AB - Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.
LA - eng
KW - Hopf algebra; quantum group; quasigroup; loop; quantum Yang-Baxter equation; distributive
UR - http://eudml.org/doc/287558
ER -
References
top- Benkart G., Madariaga S., Pérez-Izquierdo J.M., 10.1090/S0002-9947-2012-05656-X, Trans. Amer. Math. Soc. 365 (2012), 1001–1023. Zbl1278.16032MR2995381DOI10.1090/S0002-9947-2012-05656-X
- Bruck R.H., 10.1090/S0002-9947-1946-0017288-3, Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl0061.02201MR0017288DOI10.1090/S0002-9947-1946-0017288-3
- Chari V., Pressley A., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. Zbl0839.17010MR1300632
- Davey B.A., Davis G., 10.1007/BF01187558, Algebra Universalis 21 (1985), 68–88. Zbl0604.08004MR0835972DOI10.1007/BF01187558
- Drinfeld V.G., On some unsolved problems in quantum group theory, in Quantum Groups (P.P. Kulish, ed.), Lecture Notes in Mathematics, 1510, Springer, Berlin, 1992, pp. 1–8. Zbl0765.17014MR1183473
- Green J.A., Nichols W.D., Taft E.J., 10.1016/0021-8693(80)90227-6, J. Algebra 65 (1980), 399–411. Zbl0439.16008MR0585730DOI10.1016/0021-8693(80)90227-6
- Hofmann K.H., Strambach K., 10.1216/rmjm/1181072908, Rocky Mountain J. Math. 21 (1991), 1279–1315. Zbl0801.57026MR1147861DOI10.1216/rmjm/1181072908
- Klim J., Majid S., 10.1016/j.jalgebra.2010.03.011, J. Algebra 323 (2010), 3067–3110. MR2629701DOI10.1016/j.jalgebra.2010.03.011
- Klim J., Majid S., Bicrossproduct Hopf quasigroups, Comment. Math. Univ. Carolin. 51 (2010), 287–304. Zbl1224.81014MR2682482
- Manin Yu.I., Cubic Forms: Algebra, Geometry, Arithmetic, Nauka, Moscow, 1972 (in Russian). Zbl0582.14010MR0833513
- Nichols W.D., Taft E.J., 10.1090/conm/013/685972, in Algebraists' Homage (S.A. Amitsur, D.J. Saltman and G.B. Seligman, eds.), Contemporary Mathematics, 13, American Mathematical Society, Providence, RI, 1982, pp. 363–368. Zbl0501.16013MR0685972DOI10.1090/conm/013/685972
- Pérez-Izquierdo J.M., 10.1016/j.aim.2006.04.001, Adv. Math. 208 (2007), 834–876. MR2304338DOI10.1016/j.aim.2006.04.001
- Radford D.E., Hopf Algebras, World Scientific, Singapore, 2012. Zbl1266.16036MR2894855
- Rodríguez-Romo S., Taft E.J., 10.1016/j.jalgebra.2005.01.002, J. Algebra 286 (2005), 154–160. Zbl1073.16033MR2124812DOI10.1016/j.jalgebra.2005.01.002
- Smith J.D.H., An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 2007. Zbl1122.20035MR2268350
- Smith J.D.H., 10.1515/dema-2015-0043, Demonstr. Math. 48 (2015), 620–636; DOI: 10.1515/dema-2015-0043. MR3430892DOI10.1515/dema-2015-0043
- Smith J.D.H., 10.1016/j.jalgebra.2016.02.014, J. Algebra 456 (2016), 46–75; DOI: 10.1016/j.jalgebra.2016.02.014. Zbl1350.20051MR3484135DOI10.1016/j.jalgebra.2016.02.014
- Smith J.D.H., Romanowska A.B., Post-Modern Algebra, Wiley, New York, NY, 1999. Zbl0946.00001MR1673047
- Street R., Quantum Groups, Cambridge University Press, Cambridge, 2007. Zbl1117.16031MR2294803
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.