Quantum idempotence, distributivity, and the Yang-Baxter equation

J. D. H. Smith

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 4, page 567-583
  • ISSN: 0010-2628

Abstract

top
Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.

How to cite

top

Smith, J. D. H.. "Quantum idempotence, distributivity, and the Yang-Baxter equation." Commentationes Mathematicae Universitatis Carolinae 57.4 (2016): 567-583. <http://eudml.org/doc/287558>.

@article{Smith2016,
abstract = {Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.},
author = {Smith, J. D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hopf algebra; quantum group; quasigroup; loop; quantum Yang-Baxter equation; distributive},
language = {eng},
number = {4},
pages = {567-583},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quantum idempotence, distributivity, and the Yang-Baxter equation},
url = {http://eudml.org/doc/287558},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Smith, J. D. H.
TI - Quantum idempotence, distributivity, and the Yang-Baxter equation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 4
SP - 567
EP - 583
AB - Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.
LA - eng
KW - Hopf algebra; quantum group; quasigroup; loop; quantum Yang-Baxter equation; distributive
UR - http://eudml.org/doc/287558
ER -

References

top
  1. Benkart G., Madariaga S., Pérez-Izquierdo J.M., 10.1090/S0002-9947-2012-05656-X, Trans. Amer. Math. Soc. 365 (2012), 1001–1023. Zbl1278.16032MR2995381DOI10.1090/S0002-9947-2012-05656-X
  2. Bruck R.H., 10.1090/S0002-9947-1946-0017288-3, Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl0061.02201MR0017288DOI10.1090/S0002-9947-1946-0017288-3
  3. Chari V., Pressley A., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. Zbl0839.17010MR1300632
  4. Davey B.A., Davis G., 10.1007/BF01187558, Algebra Universalis 21 (1985), 68–88. Zbl0604.08004MR0835972DOI10.1007/BF01187558
  5. Drinfeld V.G., On some unsolved problems in quantum group theory, in Quantum Groups (P.P. Kulish, ed.), Lecture Notes in Mathematics, 1510, Springer, Berlin, 1992, pp. 1–8. Zbl0765.17014MR1183473
  6. Green J.A., Nichols W.D., Taft E.J., 10.1016/0021-8693(80)90227-6, J. Algebra 65 (1980), 399–411. Zbl0439.16008MR0585730DOI10.1016/0021-8693(80)90227-6
  7. Hofmann K.H., Strambach K., 10.1216/rmjm/1181072908, Rocky Mountain J. Math. 21 (1991), 1279–1315. Zbl0801.57026MR1147861DOI10.1216/rmjm/1181072908
  8. Klim J., Majid S., 10.1016/j.jalgebra.2010.03.011, J. Algebra 323 (2010), 3067–3110. MR2629701DOI10.1016/j.jalgebra.2010.03.011
  9. Klim J., Majid S., Bicrossproduct Hopf quasigroups, Comment. Math. Univ. Carolin. 51 (2010), 287–304. Zbl1224.81014MR2682482
  10. Manin Yu.I., Cubic Forms: Algebra, Geometry, Arithmetic, Nauka, Moscow, 1972 (in Russian). Zbl0582.14010MR0833513
  11. Nichols W.D., Taft E.J., 10.1090/conm/013/685972, in Algebraists' Homage (S.A. Amitsur, D.J. Saltman and G.B. Seligman, eds.), Contemporary Mathematics, 13, American Mathematical Society, Providence, RI, 1982, pp. 363–368. Zbl0501.16013MR0685972DOI10.1090/conm/013/685972
  12. Pérez-Izquierdo J.M., 10.1016/j.aim.2006.04.001, Adv. Math. 208 (2007), 834–876. MR2304338DOI10.1016/j.aim.2006.04.001
  13. Radford D.E., Hopf Algebras, World Scientific, Singapore, 2012. Zbl1266.16036MR2894855
  14. Rodríguez-Romo S., Taft E.J., 10.1016/j.jalgebra.2005.01.002, J. Algebra 286 (2005), 154–160. Zbl1073.16033MR2124812DOI10.1016/j.jalgebra.2005.01.002
  15. Smith J.D.H., An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 2007. Zbl1122.20035MR2268350
  16. Smith J.D.H., 10.1515/dema-2015-0043, Demonstr. Math. 48 (2015), 620–636; DOI: 10.1515/dema-2015-0043. MR3430892DOI10.1515/dema-2015-0043
  17. Smith J.D.H., 10.1016/j.jalgebra.2016.02.014, J. Algebra 456 (2016), 46–75; DOI: 10.1016/j.jalgebra.2016.02.014. Zbl1350.20051MR3484135DOI10.1016/j.jalgebra.2016.02.014
  18. Smith J.D.H., Romanowska A.B., Post-Modern Algebra, Wiley, New York, NY, 1999. Zbl0946.00001MR1673047
  19. Street R., Quantum Groups, Cambridge University Press, Cambridge, 2007. Zbl1117.16031MR2294803

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.