Bicrossproduct Hopf quasigroups

Jennifer Klim; Shahn Majid

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 2, page 287-304
  • ISSN: 0010-2628

Abstract

top
We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup k M k ( G ) from every group X with a finite subgroup G X and IP quasigroup transversal M X subject to certain conditions. We identify the octonions quasigroup G 𝕆 as transversal in an order 128 group X with subgroup 2 3 and hence obtain a Hopf quasigroup k G 𝕆 > k ( 2 3 ) as a particular case of our construction.

How to cite

top

Klim, Jennifer, and Majid, Shahn. "Bicrossproduct Hopf quasigroups." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 287-304. <http://eudml.org/doc/37761>.

@article{Klim2010,
abstract = {We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup $kM \{\triangleright \blacktriangleleft \} k(G)$ from every group $X$ with a finite subgroup $G\subset X$ and IP quasigroup transversal $M\subset X$ subject to certain conditions. We identify the octonions quasigroup $G_\{\mathbb \{O\}\}$ as transversal in an order 128 group $X$ with subgroup $\mathbb \{Z\}_2^3$ and hence obtain a Hopf quasigroup $kG_\{\mathbb \{O\}\}\{\{>\blacktriangleleft \}\} k(\mathbb \{Z\}_2^3)$ as a particular case of our construction.},
author = {Klim, Jennifer, Majid, Shahn},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {IP loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset; loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset},
language = {eng},
number = {2},
pages = {287-304},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Bicrossproduct Hopf quasigroups},
url = {http://eudml.org/doc/37761},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Klim, Jennifer
AU - Majid, Shahn
TI - Bicrossproduct Hopf quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 287
EP - 304
AB - We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup $kM {\triangleright \blacktriangleleft } k(G)$ from every group $X$ with a finite subgroup $G\subset X$ and IP quasigroup transversal $M\subset X$ subject to certain conditions. We identify the octonions quasigroup $G_{\mathbb {O}}$ as transversal in an order 128 group $X$ with subgroup $\mathbb {Z}_2^3$ and hence obtain a Hopf quasigroup $kG_{\mathbb {O}}{{>\blacktriangleleft }} k(\mathbb {Z}_2^3)$ as a particular case of our construction.
LA - eng
KW - IP loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset; loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset
UR - http://eudml.org/doc/37761
ER -

References

top
  1. Albuquerque H., Majid S, 10.1006/jabr.1998.7850, J. Algebra 220 (1999), 188–224. Zbl0999.17006MR1713433DOI10.1006/jabr.1998.7850
  2. Beggs E.J., 10.1016/S0022-4049(02)00119-6, J. Pure and Applied Algebra 177 (2003), 5–41. Zbl1037.18004MR1948835DOI10.1016/S0022-4049(02)00119-6
  3. Drinfeld V.G., Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419–1457. MR1047964
  4. Klim J., Majid S., Hopf quasigroups and the algebraic 7 -sphere, J. Algebra(to appear). MR2629701
  5. Majid S., Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995. Zbl0857.17009MR1381692
  6. Perez-Izquierdo J., Shestakov I.P., 10.1016/S0021-8693(03)00389-2, J. Algebra 272 (2004), 379–393. Zbl1077.17027MR2029038DOI10.1016/S0021-8693(03)00389-2
  7. Smith J.D.H., Introduction to Quasigroups and their Representations, Taylor & Francis, 2006. Zbl1122.20035MR2268350
  8. Zhu Y., Hecke algebras and representation ring of Hopf algebras, AMS/IP Stud. Adv. Math. 20, Amer. Math. Soc., Providence, RI, 2001, pp. 219–227. Zbl1064.20011MR1830177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.