Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds
Archivum Mathematicum (2016)
- Volume: 052, Issue: 4, page 207-219
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKhanh, Nguyen Ngoc. "Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds." Archivum Mathematicum 052.4 (2016): 207-219. <http://eudml.org/doc/287560>.
@article{Khanh2016,
abstract = {In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds $(M,g)$ for the following general heat equation \[ u\_t=\Delta \_V u+au\log u+bu \]
where $a$ is a constant and $b$ is a differentiable function defined on $M\times [0, \infty )$. We suppose that the Bakry-Émery curvature and the $N$-dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.},
author = {Khanh, Nguyen Ngoc},
journal = {Archivum Mathematicum},
keywords = {gradient estimates; general heat equation; Laplacian comparison theorem; $V$-Bochner-Weitzenböck; Bakry-Emery Ricci curvature},
language = {eng},
number = {4},
pages = {207-219},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds},
url = {http://eudml.org/doc/287560},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Khanh, Nguyen Ngoc
TI - Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 4
SP - 207
EP - 219
AB - In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds $(M,g)$ for the following general heat equation \[ u_t=\Delta _V u+au\log u+bu \]
where $a$ is a constant and $b$ is a differentiable function defined on $M\times [0, \infty )$. We suppose that the Bakry-Émery curvature and the $N$-dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.
LA - eng
KW - gradient estimates; general heat equation; Laplacian comparison theorem; $V$-Bochner-Weitzenböck; Bakry-Emery Ricci curvature
UR - http://eudml.org/doc/287560
ER -
References
top- Chen, Q., Jost, J., Qiu, H.B., 10.1007/s10455-012-9327-z, Ann. Global Anal. Geom. 42 (2012), 565–584. (2012) Zbl1270.58010MR2995205DOI10.1007/s10455-012-9327-z
- Davies, E.B., Heat kernels and spectral theory, Cambridge University Press, 1989. (1989) Zbl0699.35006MR0990239
- Dung, N.T., Khanh, N.N., 10.1007/s00013-015-0828-4, Arch. Math (Basel) 105 (2015), 479–490. (2015) Zbl1329.58023MR3413923DOI10.1007/s00013-015-0828-4
- Huang, G.Y., Ma, B.Q., 10.1007/s00013-009-0091-7, Arch. Math. (Basel) 94 (2010), 265–275. (2010) Zbl1194.58020MR2602453DOI10.1007/s00013-009-0091-7
- Li, P., Yau, S.T., On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 152–201. (1986) Zbl0611.58045MR0834612
- Li, Y., Li-Yau-Hamilton estimates and Bakry-Emery Ricci curvature, Nonlinear Anal. 113 (2015), 1–32. (2015) Zbl1310.58015MR3281843
- Negrin, E.R., 10.1006/jfan.1995.1008, J. Funct. Anal. 127 (1995), 198–203. (1995) Zbl0842.58078MR1308622DOI10.1006/jfan.1995.1008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.