On dicyclic groups as inner mapping groups of finite loops
Emma Leppälä; Markku Niemenmaa
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 4, page 549-553
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLeppälä, Emma, and Niemenmaa, Markku. "On dicyclic groups as inner mapping groups of finite loops." Commentationes Mathematicae Universitatis Carolinae 57.4 (2016): 549-553. <http://eudml.org/doc/287562>.
@article{Leppälä2016,
abstract = {Let $G$ be a finite group with a dicyclic subgroup $H$. We show that if there exist $H$-connected transversals in $G$, then $G$ is a solvable group. We apply this result to loop theory and show that if the inner mapping group $I(Q)$ of a finite loop $Q$ is dicyclic, then $Q$ is a solvable loop. We also discuss a more general solvability criterion in the case where $I(Q)$ is a certain type of a direct product.},
author = {Leppälä, Emma, Niemenmaa, Markku},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {solvable loop; inner mapping group; dicyclic group},
language = {eng},
number = {4},
pages = {549-553},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On dicyclic groups as inner mapping groups of finite loops},
url = {http://eudml.org/doc/287562},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Leppälä, Emma
AU - Niemenmaa, Markku
TI - On dicyclic groups as inner mapping groups of finite loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 4
SP - 549
EP - 553
AB - Let $G$ be a finite group with a dicyclic subgroup $H$. We show that if there exist $H$-connected transversals in $G$, then $G$ is a solvable group. We apply this result to loop theory and show that if the inner mapping group $I(Q)$ of a finite loop $Q$ is dicyclic, then $Q$ is a solvable loop. We also discuss a more general solvability criterion in the case where $I(Q)$ is a certain type of a direct product.
LA - eng
KW - solvable loop; inner mapping group; dicyclic group
UR - http://eudml.org/doc/287562
ER -
References
top- Carr J.G., 10.1007/BF01224664, Arch. Math. 27 (1976), 225–231. MR0417288DOI10.1007/BF01224664
- Drápal A., 10.1007/s605-002-8256-2, Monatsh. Math. 134 (2002), 191–206. MR1883500DOI10.1007/s605-002-8256-2
- Huppert B., Endliche Gruppen I, Springer, Berlin-Heidelberg, 1967. Zbl0412.20002MR0224703
- Leppälä E., Niemenmaa M., On finite loops whose inner mapping groups are direct products of dihedral groups and abelian groups, Quasigroups Related Systems 20 (2012), no. 2, 257–260. Zbl1273.20073MR3232747
- Leppälä E., Niemenmaa M., On finite commutative loops which are centrally nilpotent, Comment. Math. Univ. Carolin. 56 (2015), no. 2, 139–143. Zbl1339.20064MR3338728
- Mazur M., 10.1515/JGT.2007.015, J. Group Theory 10 (2007), 195–203. Zbl1150.20010MR2302614DOI10.1515/JGT.2007.015
- Niemenmaa M., 10.1016/j.jalgebra.2002.09.001, J. Algebra 273 (2004), 288–294. Zbl1047.20051MR2032461DOI10.1016/j.jalgebra.2002.09.001
- Niemenmaa M., Kepka T., 10.1016/0021-8693(90)90152-E, J. Algebra 135 (1990), 112–122. Zbl0706.20046MR1076080DOI10.1016/0021-8693(90)90152-E
- Vesanen A., 10.1006/jabr.1996.0098, J. Algebra 180 (1996), 862–876. MR1379214DOI10.1006/jabr.1996.0098
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.