On finite commutative loops which are centrally nilpotent

Emma Leppälä; Markku Niemenmaa

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 2, page 139-143
  • ISSN: 0010-2628

Abstract

top
Let Q be a finite commutative loop and let the inner mapping group I ( Q ) C p n × C p n , where p is an odd prime number and n 1 . We show that Q is centrally nilpotent of class two.

How to cite

top

Leppälä, Emma, and Niemenmaa, Markku. "On finite commutative loops which are centrally nilpotent." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 139-143. <http://eudml.org/doc/270112>.

@article{Leppälä2015,
abstract = {Let $Q$ be a finite commutative loop and let the inner mapping group $I(Q) \cong C_\{p^n\} \times C_\{p^n\}$, where $p$ is an odd prime number and $n \ge 1$. We show that $Q$ is centrally nilpotent of class two.},
author = {Leppälä, Emma, Niemenmaa, Markku},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; inner mapping group; centrally nilpotent loop; finite commutative loops; Bol loops; Moufang loops; autotopisms; pseudoautomorphisms; inner mapping groups; centrally nilpotent loops; connected transversals},
language = {eng},
number = {2},
pages = {139-143},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On finite commutative loops which are centrally nilpotent},
url = {http://eudml.org/doc/270112},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Leppälä, Emma
AU - Niemenmaa, Markku
TI - On finite commutative loops which are centrally nilpotent
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 139
EP - 143
AB - Let $Q$ be a finite commutative loop and let the inner mapping group $I(Q) \cong C_{p^n} \times C_{p^n}$, where $p$ is an odd prime number and $n \ge 1$. We show that $Q$ is centrally nilpotent of class two.
LA - eng
KW - loop; inner mapping group; centrally nilpotent loop; finite commutative loops; Bol loops; Moufang loops; autotopisms; pseudoautomorphisms; inner mapping groups; centrally nilpotent loops; connected transversals
UR - http://eudml.org/doc/270112
ER -

References

top
  1. Bruck R.H., 10.1090/S0002-9947-1946-0017288-3, Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl0061.02201MR0017288DOI10.1090/S0002-9947-1946-0017288-3
  2. Csörgö P., 10.1016/j.ejc.2005.12.002, European J. Combin. 28 (2007), 858–867. Zbl1149.20053MR2300766DOI10.1016/j.ejc.2005.12.002
  3. Drápal A., Vojtěchovský P., 10.1016/j.ejc.2007.10.001, European J. Combin. 29 (2008), no. 7, 1662–1681. MR2431758DOI10.1016/j.ejc.2007.10.001
  4. Kepka T., Niemenmaa M., 10.1007/BF01198806, Arch. Math. 60 (1993), 233–236. MR1201636DOI10.1007/BF01198806
  5. Niemenmaa M., 10.1017/S0004972700038491, Bull. Austral. Math. Soc. 71 (2005), 487–492. Zbl1080.20061MR2150938DOI10.1017/S0004972700038491
  6. Niemenmaa M., Kepka T., 10.1016/0021-8693(90)90152-E, J. Algebra 135 (1990), 112–122. Zbl0706.20046MR1076080DOI10.1016/0021-8693(90)90152-E
  7. Niemenmaa M., Kepka T., 10.1017/S0004972700016166, Bull. Austral. Math. Soc. 49 (1994), 121–128. Zbl0799.20020MR1262682DOI10.1017/S0004972700016166
  8. Niemenmaa M., Rytty M., Connected transversals and multiplication groups of loops, Quasigroups and Related Systems 15 (2007), 95–107. Zbl1133.20009MR2379127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.