Projective structure, SL ˜ ( 3 , ) and the symplectic Dirac operator

Marie Holíková; Libor Křižka; Petr Somberg

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 5, page 313-324
  • ISSN: 0044-8753

Abstract

top
Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ˜ ( 3 , ) .

How to cite

top

Holíková, Marie, Křižka, Libor, and Somberg, Petr. "Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb {R})$ and the symplectic Dirac operator." Archivum Mathematicum 052.5 (2016): 313-324. <http://eudml.org/doc/287573>.

@article{Holíková2016,
abstract = {Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is $\{\widetilde\{\}\}(3,)$.},
author = {Holíková, Marie, Křižka, Libor, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {projective structure; Segal-Shale-Weil representation; generalized Verma modules; symplectic Dirac operator; $(3,)$},
language = {eng},
number = {5},
pages = {313-324},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Projective structure, $\widetilde\{\operatorname\{SL\}\}(3,\mathbb \{R\})$ and the symplectic Dirac operator},
url = {http://eudml.org/doc/287573},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Holíková, Marie
AU - Křižka, Libor
AU - Somberg, Petr
TI - Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb {R})$ and the symplectic Dirac operator
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 5
SP - 313
EP - 324
AB - Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ${\widetilde{}}(3,)$.
LA - eng
KW - projective structure; Segal-Shale-Weil representation; generalized Verma modules; symplectic Dirac operator; $(3,)$
UR - http://eudml.org/doc/287573
ER -

References

top
  1. Collingwood, D.H., Shelton, B., 10.2140/pjm.1990.146.227, Pacific J. Math. 146 (2) (1990), 227–237. (1990) Zbl0733.17005MR1078380DOI10.2140/pjm.1990.146.227
  2. De Bie, H., Holíková, M., Somberg, P., Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator, arXiv:1511.04189, 2015. 
  3. De Bie, H., Somberg, P., Souček, V., 10.1016/j.geomphys.2013.09.005, J. Geom. Phys. 75 (2014), 120–128. (2014) Zbl1279.30051MR3126939DOI10.1016/j.geomphys.2013.09.005
  4. Habermann, K., Habermann, L., 10.1007/978-3-540-33421-7_4, Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. (2006) Zbl1102.53032MR2252919DOI10.1007/978-3-540-33421-7_4
  5. Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., 10.1016/j.aim.2015.08.020, Adv. Math. 285 (2015), 1796–1852. (2015) Zbl1327.53044MR3406542DOI10.1016/j.aim.2015.08.020
  6. Kostant, B., Symplectic spinors, Symposia Mathematica, Progress in Mathematics, vol. XIV, Academic Press, London, 1974, pp. 139–152. (1974) Zbl0321.58015MR0400304
  7. Kostant, B., Verma modules and the existence of quasi-invariant differential operators, Non-Commutative Harmonic Analysis, Lecture Notes in Math., vol. 466, Springer, Berlin, 1975, pp. 101–128. (1975) MR0396853
  8. Křižka, L., Somberg, P., Algebraic analysis of scalar generalized Verma modules of Heisenberg parabolic type I.: A n -series, arXiv:1502.07095, to appear in Transformation Groups, 2015. MR3449111
  9. Křižka, L., Somberg, P., Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type II.: C n , D n -series, (in preparation). 
  10. Ørsted, B., Generalized gradients and Poisson transforms, Global analysis and harmonic analysis, Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 235–249. (2000) Zbl0989.22018MR1822363
  11. Somberg, P., Šilhan, J., Higher symmetries of the symplectic Dirac operator, (in preparation). 
  12. Torasso, P., 10.1007/BF02392971, Acta Math. 150 (1) (1983), 153–242. (1983) MR0709141DOI10.1007/BF02392971
  13. Wolf, J.A., Unitary representations of maximal parabolic subgroups of the classical groups, Mem. Amer. Math. Soc., vol. 8, American Mathematical Society, Providence, 1976. (1976) Zbl0344.22016MR0444847

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.