On the preservation of Baire and weakly Baire category
Alireza Kamel Mirmostafaee; Zbigniew Piotrowski
Mathematica Bohemica (2016)
- Volume: 141, Issue: 4, page 475-481
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMirmostafaee, Alireza Kamel, and Piotrowski, Zbigniew. "On the preservation of Baire and weakly Baire category." Mathematica Bohemica 141.4 (2016): 475-481. <http://eudml.org/doc/287586>.
@article{Mirmostafaee2016,
abstract = {We consider the question of preservation of Baire and weakly Baire category under images and preimages of certain kind of functions. It is known that Baire category is preserved under image of quasi-continuous feebly open surjections. In order to extend this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class of quasi-interior continuous functions. We show that Baire and weakly Baire categories are preserved under image of feebly open quasi-interior continuous surjections. We also give a new definition for countably fiber-completeness of a function. We prove that Baire category is preserved under inverse image of a countably fiber-complete function provided that it is feebly open and feebly continuous.},
author = {Mirmostafaee, Alireza Kamel, Piotrowski, Zbigniew},
journal = {Mathematica Bohemica},
keywords = {feebly continuous mapping; quasi-interior continuity; Baire space; weakly Baire space; fiber-completeness},
language = {eng},
number = {4},
pages = {475-481},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the preservation of Baire and weakly Baire category},
url = {http://eudml.org/doc/287586},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Mirmostafaee, Alireza Kamel
AU - Piotrowski, Zbigniew
TI - On the preservation of Baire and weakly Baire category
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 4
SP - 475
EP - 481
AB - We consider the question of preservation of Baire and weakly Baire category under images and preimages of certain kind of functions. It is known that Baire category is preserved under image of quasi-continuous feebly open surjections. In order to extend this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class of quasi-interior continuous functions. We show that Baire and weakly Baire categories are preserved under image of feebly open quasi-interior continuous surjections. We also give a new definition for countably fiber-completeness of a function. We prove that Baire category is preserved under inverse image of a countably fiber-complete function provided that it is feebly open and feebly continuous.
LA - eng
KW - feebly continuous mapping; quasi-interior continuity; Baire space; weakly Baire space; fiber-completeness
UR - http://eudml.org/doc/287586
ER -
References
top- Beer, G., Villar, L., Weakly Baire spaces, Southeast Asian Bull. Math. 11 (1988), 127-133. (1988) Zbl0665.54019MR0958315
- Bourbaki, N., Topologie Générale -- Chapitre 9: Utilisation des Nombres Réels en Topologie Générale, Éléments de Mathématique I: Les Structures Fondamentales de L'analyse -- Livre III Actualités Scientifiques et Industrielles, No. 1045 Hermann & Cie, Paris French (1948). (1948) MR0027138
- Cao, J., Moors, W. B., A survey on topological games and their applications in analysis, RACSAM, Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Mat. 100 (2006), 39-49. (2006) Zbl1114.91024MR2267399
- Choquet, G., Lectures on Analysis, vol. 1: Integration and Topological Vector Spaces, Mathematics Lecture Note Series W. A. Benjamin, New York-Amsterdam (1969). (1969) Zbl0181.39601MR0250011
- Dobo{š}, J., A note on the invariance of Baire spaces under mappings, Časopis Pěst. Mat. 108 (1983), 409-411. (1983) Zbl0535.54005MR0727538
- Doboš, J., Piotrowski, Z., Reilly, I. L., Preimages of Baire spaces, Math. Bohem. 119 (1994), 373-379. (1994) Zbl0815.54010MR1316589
- Fleissner, W. G., Kunen, K., 10.4064/fm-101-3-229-240, Fundam. Math. 101 (1978), 229-240. (1978) Zbl0413.54036MR0521125DOI10.4064/fm-101-3-229-240
- Frol{í}k, Z., Baire spaces and some generalizations of complete metric spaces, Czech. Math. J. 11 (1961), 237-248. (1961) Zbl0149.40302MR0124870
- Frol{í}k, Z., Remarks concerning the invariance of Baire spaces under mappings, Czech. Math. J. 11 (1961), 381-385. (1961) Zbl0104.17204MR0133098
- Mirmostafaee, A. K., 10.2478/s12175-014-0255-1, Math. Slovaca 64 (2014), 1019-1026. (2014) Zbl1349.54034MR3255869DOI10.2478/s12175-014-0255-1
- Moors, W. B., 10.1090/S0002-9939-06-08389-4, Proc. Am. Math. Soc. 134 (2006), 2161-2163. (2006) Zbl1093.54008MR2215788DOI10.1090/S0002-9939-06-08389-4
- Neubrunn, T., A note on mappings of Baire spaces, Math. Slovaca 27 (1977), 173-176 correction in 442 (1977). (1977) Zbl0371.54023MR0454910
- Noll, D., 10.1090/S0002-9939-1989-0982407-2, Proc. Am. Math. Soc. 107 (1989), 847-854. (1989) Zbl0687.54012MR0982407DOI10.1090/S0002-9939-1989-0982407-2
- Oxtoby, J. C., 10.4064/fm-49-2-157-166, Fundam. Math. 49 (1961), 157-166. (1961) Zbl0113.16402MR0140638DOI10.4064/fm-49-2-157-166
- Oxtoby, J. C., Measure and Category---A Survey of the Analogies between Topological and Measure Spaces, Graduate Texts in Mathematics. Vol. 2 Springer, New York (1971). (1971) Zbl0217.09201MR0393403
- Piotrowski, Z., Reilly, I. L., Preimages of Baire spaces---an example, Quest. Answers Gen. Topology 11 (1993), 105-107. (1993) Zbl0779.54025MR1205956
- Rose, D. A., Jankovi{ć}, D. S., Hamlett, T. R., On weakly Baire spaces, Southeast Asian Bull. Math. 15 (1991), 183-190. (1991) Zbl0747.54008MR1145440
- Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics McGraw-Hill, New York (1991). (1991) Zbl0867.46001MR1157815
- Sikorski, R., 10.4064/fm-34-1-288-292, Fundam. Math. 34 (1947), 288-292. (1947) Zbl0041.31701MR0025542DOI10.4064/fm-34-1-288-292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.