Power indices of trace zero symmetric Boolean matrices

Bo Zhou

Discussiones Mathematicae - General Algebra and Applications (2004)

  • Volume: 24, Issue: 1, page 53-61
  • ISSN: 1509-9415

Abstract

top
The power index of a square Boolean matrix A is the least integer d such that Ad is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n×n primitive symmetric Boolean matrices of trace zero, the class of n×n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zero, and characterize the extreme matrices respectively.

How to cite

top

Bo Zhou. "Power indices of trace zero symmetric Boolean matrices." Discussiones Mathematicae - General Algebra and Applications 24.1 (2004): 53-61. <http://eudml.org/doc/287636>.

@article{BoZhou2004,
abstract = {The power index of a square Boolean matrix A is the least integer d such that Ad is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n×n primitive symmetric Boolean matrices of trace zero, the class of n×n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zero, and characterize the extreme matrices respectively.},
author = {Bo Zhou},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {power index; index of convergence; period; Boolean matrix; upper bound; power indices; primitive symmetric Boolean matrices; irreducible nonprimitive symmetric matrices; reducible symmetric matrices},
language = {eng},
number = {1},
pages = {53-61},
title = {Power indices of trace zero symmetric Boolean matrices},
url = {http://eudml.org/doc/287636},
volume = {24},
year = {2004},
}

TY - JOUR
AU - Bo Zhou
TI - Power indices of trace zero symmetric Boolean matrices
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2004
VL - 24
IS - 1
SP - 53
EP - 61
AB - The power index of a square Boolean matrix A is the least integer d such that Ad is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n×n primitive symmetric Boolean matrices of trace zero, the class of n×n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zero, and characterize the extreme matrices respectively.
LA - eng
KW - power index; index of convergence; period; Boolean matrix; upper bound; power indices; primitive symmetric Boolean matrices; irreducible nonprimitive symmetric matrices; reducible symmetric matrices
UR - http://eudml.org/doc/287636
ER -

References

top
  1. [1] M. Gavalec, Computing matrix period in max-min algebra, Discrete Appl. Math. 75 (1997), 63-70. Zbl0876.05070
  2. [2] D.A. Gregory, N.J. Pullman and S. Kirkland, On the dimension of the algebra generated by a Boolean matrix, Linear and Multilinear Algebra 38 (1994), 131-144. Zbl0824.15017
  3. [3] B. Liu, B.D. McKay, N.C. Wormald, and K. Zhang, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl. 133 (1990), 121-131. Zbl0741.05050
  4. [4] S.W. Neufeld, The concept of diameter in exponents of symmetric primitive graphs, Ars Combin. 51 (1999), 129-142. Zbl0977.05058
  5. [5] G. Ricci, Boolean matrices... neither Boolean nor matrices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 141-151. Zbl0964.08003
  6. [6] J. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica Ser. A 30 (1987), 348-358. Zbl0628.15017
  7. [7] J. Shao and Q. Li, On the index of maximum density for irreducible Boolean matrices, Discrete Appl. Math. 21 (1988), 147-156. Zbl0664.15007
  8. [8] B. Zhou, Exponents of primitive graphs, Australas. J. Combin. 28 (2003), 67-72. Zbl1029.05093

NotesEmbed ?

top

You must be logged in to post comments.