Power indices of trace zero symmetric Boolean matrices
Discussiones Mathematicae - General Algebra and Applications (2004)
- Volume: 24, Issue: 1, page 53-61
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Gavalec, Computing matrix period in max-min algebra, Discrete Appl. Math. 75 (1997), 63-70. Zbl0876.05070
- [2] D.A. Gregory, N.J. Pullman and S. Kirkland, On the dimension of the algebra generated by a Boolean matrix, Linear and Multilinear Algebra 38 (1994), 131-144. Zbl0824.15017
- [3] B. Liu, B.D. McKay, N.C. Wormald, and K. Zhang, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl. 133 (1990), 121-131. Zbl0741.05050
- [4] S.W. Neufeld, The concept of diameter in exponents of symmetric primitive graphs, Ars Combin. 51 (1999), 129-142. Zbl0977.05058
- [5] G. Ricci, Boolean matrices... neither Boolean nor matrices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 141-151. Zbl0964.08003
- [6] J. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica Ser. A 30 (1987), 348-358. Zbl0628.15017
- [7] J. Shao and Q. Li, On the index of maximum density for irreducible Boolean matrices, Discrete Appl. Math. 21 (1988), 147-156. Zbl0664.15007
- [8] B. Zhou, Exponents of primitive graphs, Australas. J. Combin. 28 (2003), 67-72. Zbl1029.05093