Diophantine equations and class number of imaginary quadratic fields

Zhenfu Cao; Xiaolei Dong

Discussiones Mathematicae - General Algebra and Applications (2000)

  • Volume: 20, Issue: 2, page 199-206
  • ISSN: 1509-9415

Abstract

top
Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and μ i - 1 , 1 ( i = 1 , 2 ) , and let h ( - 2 1 - e D ) ( e = 0 o r 1 ) denote the class number of the imaginary quadratic field ( ( - 2 1 - e D ) ) . In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then h ( - 2 1 - e D ) 0 ( m o d n ) , where D, and n satisfy k - 2 e + 1 = D x ² , x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.

How to cite

top

Zhenfu Cao, and Xiaolei Dong. "Diophantine equations and class number of imaginary quadratic fields." Discussiones Mathematicae - General Algebra and Applications 20.2 (2000): 199-206. <http://eudml.org/doc/287661>.

@article{ZhenfuCao2000,
abstract = {Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and $μ_\{i\} ∈ \{-1,1\}(i = 1,2)$, and let $h(-2^\{1-e\}D)(e = 0 or 1)$ denote the class number of the imaginary quadratic field $ℚ(√(-2^\{1-e\}D))$. In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then $h(-2^\{1-e\}D) ≡ 0 (mod n)$, where D, and n satisfy $kⁿ - 2^\{e+1\} = Dx²$, x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.},
author = {Zhenfu Cao, Xiaolei Dong},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {Diophantine equation; imaginary quadratic field; class number; cryptographic problem; Diophantine equations; cryptography},
language = {eng},
number = {2},
pages = {199-206},
title = {Diophantine equations and class number of imaginary quadratic fields},
url = {http://eudml.org/doc/287661},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Zhenfu Cao
AU - Xiaolei Dong
TI - Diophantine equations and class number of imaginary quadratic fields
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2000
VL - 20
IS - 2
SP - 199
EP - 206
AB - Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and $μ_{i} ∈ {-1,1}(i = 1,2)$, and let $h(-2^{1-e}D)(e = 0 or 1)$ denote the class number of the imaginary quadratic field $ℚ(√(-2^{1-e}D))$. In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then $h(-2^{1-e}D) ≡ 0 (mod n)$, where D, and n satisfy $kⁿ - 2^{e+1} = Dx²$, x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.
LA - eng
KW - Diophantine equation; imaginary quadratic field; class number; cryptographic problem; Diophantine equations; cryptography
UR - http://eudml.org/doc/287661
ER -

References

top
  1. [1] J. Buchmann and H.C. Williams, Quadratic fields and cryptography, 'Number Theory and Cryptography', University Press, Cambridge 1990, 9-25. Zbl0711.11038
  2. [2] Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124. Zbl0971.11510
  3. [3] Z. Cao, On the equation D x ² ± 1 = y p , xy ≠ 0 (Chinese), J. Math. Res. Exposition 7 (1987), no. 3, 414. 
  4. [4] Z. Cao, On the equation a x m - b y = 2 (Chinese), Chinese Sci. Bull. 35 (1990), 558-559. 
  5. [5] Z. Cao, On the Diophantine equation ( a x m - 4 c ) / ( a b x - 4 c ) = b y ² (Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112. Zbl0971.11518
  6. [6] Z. Cao, The Diophantine equation c x + d y = z p , C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234. 
  7. [7] Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198. Zbl0979.11019
  8. [8] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97. Zbl0079.05803
  9. [9] K. Inkeri, On the diophantine equations 2 y ² = 7 k + 1 and x² + 11 = 3ⁿ, Elem. Math. 34 (1979), 119-121. Zbl0415.10013
  10. [10] V.A. Lebesgue, Sur l’impossibilitéon nombres entiers de l’équation x m = y ² + 1 , Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181. 
  11. [11] W. Ljunggren, Über die Gleichungen 1 + Dx² = 2yⁿ und 1 + Dx² = 4yⁿ, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118. Zbl68.0069.02
  12. [12] R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197. Zbl0859.11058
  13. [13] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82. 
  14. [14] C. Richaud, Sur la résolution des équations x² - Ay² = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182. 
  15. [15] C. Størmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation marctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895). 
  16. [16] D.T. Walker, On the Diophantina equation mx² - ny² = ±1, Amer. Math. Monthly 74 (1967), 504-513. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.