Diophantine equations and class number of imaginary quadratic fields
Discussiones Mathematicae - General Algebra and Applications (2000)
- Volume: 20, Issue: 2, page 199-206
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topZhenfu Cao, and Xiaolei Dong. "Diophantine equations and class number of imaginary quadratic fields." Discussiones Mathematicae - General Algebra and Applications 20.2 (2000): 199-206. <http://eudml.org/doc/287661>.
@article{ZhenfuCao2000,
abstract = {Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and $μ_\{i\} ∈ \{-1,1\}(i = 1,2)$, and let $h(-2^\{1-e\}D)(e = 0 or 1)$ denote the class number of the imaginary quadratic field $ℚ(√(-2^\{1-e\}D))$. In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then $h(-2^\{1-e\}D) ≡ 0 (mod n)$, where D, and n satisfy $kⁿ - 2^\{e+1\} = Dx²$, x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.},
author = {Zhenfu Cao, Xiaolei Dong},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {Diophantine equation; imaginary quadratic field; class number; cryptographic problem; Diophantine equations; cryptography},
language = {eng},
number = {2},
pages = {199-206},
title = {Diophantine equations and class number of imaginary quadratic fields},
url = {http://eudml.org/doc/287661},
volume = {20},
year = {2000},
}
TY - JOUR
AU - Zhenfu Cao
AU - Xiaolei Dong
TI - Diophantine equations and class number of imaginary quadratic fields
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2000
VL - 20
IS - 2
SP - 199
EP - 206
AB - Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and $μ_{i} ∈ {-1,1}(i = 1,2)$, and let $h(-2^{1-e}D)(e = 0 or 1)$ denote the class number of the imaginary quadratic field $ℚ(√(-2^{1-e}D))$. In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then $h(-2^{1-e}D) ≡ 0 (mod n)$, where D, and n satisfy $kⁿ - 2^{e+1} = Dx²$, x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.
LA - eng
KW - Diophantine equation; imaginary quadratic field; class number; cryptographic problem; Diophantine equations; cryptography
UR - http://eudml.org/doc/287661
ER -
References
top- [1] J. Buchmann and H.C. Williams, Quadratic fields and cryptography, 'Number Theory and Cryptography', University Press, Cambridge 1990, 9-25. Zbl0711.11038
- [2] Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124. Zbl0971.11510
- [3] Z. Cao, On the equation , xy ≠ 0 (Chinese), J. Math. Res. Exposition 7 (1987), no. 3, 414.
- [4] Z. Cao, On the equation (Chinese), Chinese Sci. Bull. 35 (1990), 558-559.
- [5] Z. Cao, On the Diophantine equation (Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112. Zbl0971.11518
- [6] Z. Cao, The Diophantine equation , C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234.
- [7] Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198. Zbl0979.11019
- [8] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97. Zbl0079.05803
- [9] K. Inkeri, On the diophantine equations and x² + 11 = 3ⁿ, Elem. Math. 34 (1979), 119-121. Zbl0415.10013
- [10] V.A. Lebesgue, Sur l’impossibilitéon nombres entiers de l’équation , Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181.
- [11] W. Ljunggren, Über die Gleichungen 1 + Dx² = 2yⁿ und 1 + Dx² = 4yⁿ, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118. Zbl68.0069.02
- [12] R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197. Zbl0859.11058
- [13] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82.
- [14] C. Richaud, Sur la résolution des équations x² - Ay² = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182.
- [15] C. Størmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation marctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895).
- [16] D.T. Walker, On the Diophantina equation mx² - ny² = ±1, Amer. Math. Monthly 74 (1967), 504-513.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.