Diophantine equations and class number of imaginary quadratic fields
Discussiones Mathematicae - General Algebra and Applications (2000)
- Volume: 20, Issue: 2, page 199-206
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Buchmann and H.C. Williams, Quadratic fields and cryptography, 'Number Theory and Cryptography', University Press, Cambridge 1990, 9-25. Zbl0711.11038
- [2] Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124. Zbl0971.11510
- [3] Z. Cao, On the equation , xy ≠ 0 (Chinese), J. Math. Res. Exposition 7 (1987), no. 3, 414.
- [4] Z. Cao, On the equation (Chinese), Chinese Sci. Bull. 35 (1990), 558-559.
- [5] Z. Cao, On the Diophantine equation (Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112. Zbl0971.11518
- [6] Z. Cao, The Diophantine equation , C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234.
- [7] Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198. Zbl0979.11019
- [8] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97. Zbl0079.05803
- [9] K. Inkeri, On the diophantine equations and x² + 11 = 3ⁿ, Elem. Math. 34 (1979), 119-121. Zbl0415.10013
- [10] V.A. Lebesgue, Sur l’impossibilitéon nombres entiers de l’équation , Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181.
- [11] W. Ljunggren, Über die Gleichungen 1 + Dx² = 2yⁿ und 1 + Dx² = 4yⁿ, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118. Zbl68.0069.02
- [12] R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197. Zbl0859.11058
- [13] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82.
- [14] C. Richaud, Sur la résolution des équations x² - Ay² = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182.
- [15] C. Størmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation marctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895).
- [16] D.T. Walker, On the Diophantina equation mx² - ny² = ±1, Amer. Math. Monthly 74 (1967), 504-513.