Canonical distributions and phase transitions
Discussiones Mathematicae Probability and Statistics (2000)
- Volume: 20, Issue: 2, page 167-176
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.W. Gibbs, Elementary Principles in Statistical Mechanics Developed with Especial Reference to the Rational Foundation of Thermodynamics, Yale University Press New Haven, CT 1902. Zbl33.0708.01
- [2] E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), 620. Zbl0084.43701
- [3] M. Tribus, Rational Descriptions, Decisions and Designs Pergamon, Elmsford, NY 1969.
- [4] R.D. Levine and M. Tribus (eds.), The Maximum Entropy Formalism, MIT Press, Cambridge, MA 1979.
- [5] J.H. Justice (ed.), Maximum Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge 1986.
- [6] W.T. Grandy, Jr, Foundations of Statistical Mechanics, Volume I, Reidel, Dordrecht 1987. Zbl0721.60119
- [7] A. Rényi, On measures of entropy and information, Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability 1960, Volume 1, University of California Press, Berkeley, CA 1961. Zbl0115.35502
- [8] J. Aczél, Measuring information beyond information theory - why some generalized information measures may be useful, others not, Aequationes Math. 27 (1984), 1. Zbl0547.94004
- [9] W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, ``Handbuch der Physik, Bd. 24/1 Quantentheorie'', Springer, Berlin 1933. Zbl0007.13504
- [10] C. Shannon, A mathematical theory of communication, Bell Systems Technical Journal 23 (1948), 349. Zbl1154.94303
- [11] K.B. Athreya, Entropy maximization, IMA Preprint Series # 1231, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 1994.