Strongly rectifiable and S-homogeneous modules

Libuše Tesková

Discussiones Mathematicae - General Algebra and Applications (2000)

  • Volume: 20, Issue: 1, page 5-20
  • ISSN: 1509-9415

Abstract

top
In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.

How to cite

top

Libuše Tesková. "Strongly rectifiable and S-homogeneous modules." Discussiones Mathematicae - General Algebra and Applications 20.1 (2000): 5-20. <http://eudml.org/doc/287706>.

@article{LibušeTesková2000,
abstract = {In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.},
author = {Libuše Tesková},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {strongly rectifiable module; S-homogeneous module; pure submodule; refined submodule; pure composite series; Hill's module; strongly rectifiable modules; -homogeneous modules; pure submodules; refined submodules; pure composition series; Hill modules; uniserial submodules; direct sums},
language = {eng},
number = {1},
pages = {5-20},
title = {Strongly rectifiable and S-homogeneous modules},
url = {http://eudml.org/doc/287706},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Libuše Tesková
TI - Strongly rectifiable and S-homogeneous modules
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2000
VL - 20
IS - 1
SP - 5
EP - 20
AB - In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.
LA - eng
KW - strongly rectifiable module; S-homogeneous module; pure submodule; refined submodule; pure composite series; Hill's module; strongly rectifiable modules; -homogeneous modules; pure submodules; refined submodules; pure composition series; Hill modules; uniserial submodules; direct sums
UR - http://eudml.org/doc/287706
ER -

References

top
  1. [1] K. Benabdallah, A. Bouanane and S. Singh, On sums of uniserial modules, Rocky Mountain J. Math. 20 (1990), 15-29. Zbl0718.16005
  2. [2] K. Benabdallah and S. Hattab, Modules localement rectifiables et modules rectifiables preprint, Université de Montréal (1985). 
  3. [3] K. Benabdallah and S. Hattab, Rectifiable modules. I, Comment. Math. Univ. St. Paul. 37 (1988), 131-143. Zbl0666.16016
  4. [4] L. Bican, Kulikov's criterion for modules, J. Reine Angew. Math. 288 (1976), 154-159. Zbl0333.16021
  5. [5] L. Bican, The structure of primary modules, Acta Univ. Carolin. Math. Phys. 17 (1976) no. 2, 3-12. Zbl0395.16027
  6. [6] A. Facchini and L. Salce, Uniserial modules, Comm. Algebra 18 (2) (1990), 499-517. Zbl0712.16008
  7. [7] T.S. Shores, Decomposition of finitely generated modules, Proc. Amer. Math. Soc. 30 (1971), 445-450. Zbl0203.05002
  8. [8] T.S. Shores, The structure of Loewy modules, J. Reine Angew. Math. 254 (1972), 204-220. Zbl0235.16024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.