Duality for some free modes

Krzysztof J. Pszczoła; Anna B. Romanowska; Jonathan D.H. Smith

Discussiones Mathematicae - General Algebra and Applications (2003)

  • Volume: 23, Issue: 1, page 45-61
  • ISSN: 1509-9415

Abstract

top
The paper establishes a duality between a category of free subreducts of affine spaces and a corresponding category of generalized hypercubes with constants. This duality yields many others, in particular a duality between the category of (finitely generated) free barycentric algebras (simplices of real affine spaces) and a corresponding category of hypercubes with constants.

How to cite

top

Krzysztof J. Pszczoła, Anna B. Romanowska, and Jonathan D.H. Smith. "Duality for some free modes." Discussiones Mathematicae - General Algebra and Applications 23.1 (2003): 45-61. <http://eudml.org/doc/287722>.

@article{KrzysztofJ2003,
abstract = {The paper establishes a duality between a category of free subreducts of affine spaces and a corresponding category of generalized hypercubes with constants. This duality yields many others, in particular a duality between the category of (finitely generated) free barycentric algebras (simplices of real affine spaces) and a corresponding category of hypercubes with constants.},
author = {Krzysztof J. Pszczoła, Anna B. Romanowska, Jonathan D.H. Smith},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {duality; modes; affine spaces and their subreducts; barycentric algebras; convex sets; simplices; hypercubes; affine space; varieties of modes},
language = {eng},
number = {1},
pages = {45-61},
title = {Duality for some free modes},
url = {http://eudml.org/doc/287722},
volume = {23},
year = {2003},
}

TY - JOUR
AU - Krzysztof J. Pszczoła
AU - Anna B. Romanowska
AU - Jonathan D.H. Smith
TI - Duality for some free modes
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2003
VL - 23
IS - 1
SP - 45
EP - 61
AB - The paper establishes a duality between a category of free subreducts of affine spaces and a corresponding category of generalized hypercubes with constants. This duality yields many others, in particular a duality between the category of (finitely generated) free barycentric algebras (simplices of real affine spaces) and a corresponding category of hypercubes with constants.
LA - eng
KW - duality; modes; affine spaces and their subreducts; barycentric algebras; convex sets; simplices; hypercubes; affine space; varieties of modes
UR - http://eudml.org/doc/287722
ER -

References

top
  1. [1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, MO, 1974. 
  2. [2] D.M. Clark and B.A. Davey, Natural Dualities for the Working Algebraists, Cambridge University Press, Cambridge 1998. Zbl0910.08001
  3. [3] B. Csákány, Varieties of affine modules, Acta Sci Math. 37 (1975), 3-10. 
  4. [4] B.A. Davey, Duality theory on ten dollars a day, 'Algebras and Orders', Kluwer Acad. Publ. 1993, 71-111. Zbl0793.08001
  5. [5] B.A. Davey and R.W. Quackenbush, Bookkeeping duality for paraprimal algebras, Contributions to General Algebra 9 (1995), 19-26. Zbl0884.08009
  6. [6] B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, Colloq. Math. Soc. J. Bolyai 33 (1980), 101-275. Zbl0503.08011
  7. [7] G. Grätzer, Universal Algebra, Springer-Verlag, Berlin 1979. 
  8. [8] K.H. Hofmann, M. Mislove and A. Stralka, The Pontryagin Duality of Compact 0-Dimensional Semilattices and its Applications, Springer-Verlag,Berlin 1974. Zbl0281.06004
  9. [9] J. Jezek and T. Kepka, Free commutative idempotent abelian groupoids and quasigroups, Acta Univ. Carolin. Math. Phys. 17 (1976), 13-19. Zbl0394.20058
  10. [10] J. Jezek and T. Kepka, Medial Groupoids, Academia, Praha 1983. 
  11. [11] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, Berlin 1971. 
  12. [12] A. I. Mal'cev, Algebraic Systems, Springer-Verlag, New York 1973. 
  13. [13] W.D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch. Math. 21 (1970), 11-16. Zbl0194.01502
  14. [14] K. Pszczoła, Duality for affine spaces over finite fields, Contributions to General Algebra 13 (2001), 285-293. Zbl0993.08008
  15. [15] K.J. Pszczoła, A.B. Romanowska and J.D.H. Smith, Duality for quadrilaterals, Contribution to General Algebra, to appear. Zbl1049.08001
  16. [16] A.B. Romanowska, Barycentric algebras, 'General Algebra and Applications', Shaker Verlag, Aachen 2000, 167-181. 
  17. [17] A.B. Romanowska and J.D.H. Smith, Modal Theory, Heldermann-Verlag, Berlin 1985. 
  18. [18] A.B. Romanowska and J.D.H. Smith, Semilattice-based dualities, Studia Logica 56 (1996), 225-261. Zbl0854.08007
  19. [19] A.B. Romanowska and J.D.H. Smith, Duality for semilattice representations, J. Pure Appl. Algebra 115 (1997), 289-308. Zbl0872.18001
  20. [20] A.B. Romanowska and J.D.H. Smith, Embedding sums of cancellatice modes into functorial sums of affine spaces, 'Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki's 80th Birthday', IOS Press, Amsterdam 2001, 127-139. 
  21. [21] A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore 2002. 
  22. [22] A.B. Romanowska and J.D.H. Smith, Poset extensions, convex sets, and semilattice presentations, preprint, 2002. Zbl1112.06002
  23. [23] J.D.H. Smith and A. B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.