Duality for some free modes
Krzysztof J. Pszczoła; Anna B. Romanowska; Jonathan D.H. Smith
Discussiones Mathematicae - General Algebra and Applications (2003)
- Volume: 23, Issue: 1, page 45-61
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topKrzysztof J. Pszczoła, Anna B. Romanowska, and Jonathan D.H. Smith. "Duality for some free modes." Discussiones Mathematicae - General Algebra and Applications 23.1 (2003): 45-61. <http://eudml.org/doc/287722>.
@article{KrzysztofJ2003,
abstract = {The paper establishes a duality between a category of free subreducts of affine spaces and a corresponding category of generalized hypercubes with constants. This duality yields many others, in particular a duality between the category of (finitely generated) free barycentric algebras (simplices of real affine spaces) and a corresponding category of hypercubes with constants.},
author = {Krzysztof J. Pszczoła, Anna B. Romanowska, Jonathan D.H. Smith},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {duality; modes; affine spaces and their subreducts; barycentric algebras; convex sets; simplices; hypercubes; affine space; varieties of modes},
language = {eng},
number = {1},
pages = {45-61},
title = {Duality for some free modes},
url = {http://eudml.org/doc/287722},
volume = {23},
year = {2003},
}
TY - JOUR
AU - Krzysztof J. Pszczoła
AU - Anna B. Romanowska
AU - Jonathan D.H. Smith
TI - Duality for some free modes
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2003
VL - 23
IS - 1
SP - 45
EP - 61
AB - The paper establishes a duality between a category of free subreducts of affine spaces and a corresponding category of generalized hypercubes with constants. This duality yields many others, in particular a duality between the category of (finitely generated) free barycentric algebras (simplices of real affine spaces) and a corresponding category of hypercubes with constants.
LA - eng
KW - duality; modes; affine spaces and their subreducts; barycentric algebras; convex sets; simplices; hypercubes; affine space; varieties of modes
UR - http://eudml.org/doc/287722
ER -
References
top- [1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, MO, 1974.
- [2] D.M. Clark and B.A. Davey, Natural Dualities for the Working Algebraists, Cambridge University Press, Cambridge 1998. Zbl0910.08001
- [3] B. Csákány, Varieties of affine modules, Acta Sci Math. 37 (1975), 3-10.
- [4] B.A. Davey, Duality theory on ten dollars a day, 'Algebras and Orders', Kluwer Acad. Publ. 1993, 71-111. Zbl0793.08001
- [5] B.A. Davey and R.W. Quackenbush, Bookkeeping duality for paraprimal algebras, Contributions to General Algebra 9 (1995), 19-26. Zbl0884.08009
- [6] B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, Colloq. Math. Soc. J. Bolyai 33 (1980), 101-275. Zbl0503.08011
- [7] G. Grätzer, Universal Algebra, Springer-Verlag, Berlin 1979.
- [8] K.H. Hofmann, M. Mislove and A. Stralka, The Pontryagin Duality of Compact 0-Dimensional Semilattices and its Applications, Springer-Verlag,Berlin 1974. Zbl0281.06004
- [9] J. Jezek and T. Kepka, Free commutative idempotent abelian groupoids and quasigroups, Acta Univ. Carolin. Math. Phys. 17 (1976), 13-19. Zbl0394.20058
- [10] J. Jezek and T. Kepka, Medial Groupoids, Academia, Praha 1983.
- [11] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, Berlin 1971.
- [12] A. I. Mal'cev, Algebraic Systems, Springer-Verlag, New York 1973.
- [13] W.D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch. Math. 21 (1970), 11-16. Zbl0194.01502
- [14] K. Pszczoła, Duality for affine spaces over finite fields, Contributions to General Algebra 13 (2001), 285-293. Zbl0993.08008
- [15] K.J. Pszczoła, A.B. Romanowska and J.D.H. Smith, Duality for quadrilaterals, Contribution to General Algebra, to appear. Zbl1049.08001
- [16] A.B. Romanowska, Barycentric algebras, 'General Algebra and Applications', Shaker Verlag, Aachen 2000, 167-181.
- [17] A.B. Romanowska and J.D.H. Smith, Modal Theory, Heldermann-Verlag, Berlin 1985.
- [18] A.B. Romanowska and J.D.H. Smith, Semilattice-based dualities, Studia Logica 56 (1996), 225-261. Zbl0854.08007
- [19] A.B. Romanowska and J.D.H. Smith, Duality for semilattice representations, J. Pure Appl. Algebra 115 (1997), 289-308. Zbl0872.18001
- [20] A.B. Romanowska and J.D.H. Smith, Embedding sums of cancellatice modes into functorial sums of affine spaces, 'Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki's 80th Birthday', IOS Press, Amsterdam 2001, 127-139.
- [21] A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore 2002.
- [22] A.B. Romanowska and J.D.H. Smith, Poset extensions, convex sets, and semilattice presentations, preprint, 2002. Zbl1112.06002
- [23] J.D.H. Smith and A. B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 1999.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.