The Słupecki criterion by duality

Eszter K. Horváth

Discussiones Mathematicae - General Algebra and Applications (2001)

  • Volume: 21, Issue: 1, page 5-11
  • ISSN: 1509-9415

Abstract

top
A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of A k only. We show how the method applies for proving Słupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.

How to cite

top

Eszter K. Horváth. "The Słupecki criterion by duality." Discussiones Mathematicae - General Algebra and Applications 21.1 (2001): 5-11. <http://eudml.org/doc/287729>.

@article{EszterK2001,
abstract = {A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of $A^\{k\}$ only. We show how the method applies for proving Słupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.},
author = {Eszter K. Horváth},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {primal algebra; diagonal relation; Galois connection; Słupecki Criterion; Słupecki criterion; primality; functional completeness; operation-relation duality; diagonal relations},
language = {eng},
number = {1},
pages = {5-11},
title = {The Słupecki criterion by duality},
url = {http://eudml.org/doc/287729},
volume = {21},
year = {2001},
}

TY - JOUR
AU - Eszter K. Horváth
TI - The Słupecki criterion by duality
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2001
VL - 21
IS - 1
SP - 5
EP - 11
AB - A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of $A^{k}$ only. We show how the method applies for proving Słupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.
LA - eng
KW - primal algebra; diagonal relation; Galois connection; Słupecki Criterion; Słupecki criterion; primality; functional completeness; operation-relation duality; diagonal relations
UR - http://eudml.org/doc/287729
ER -

References

top
  1. [1] K.A. Baker and A.F. Pixley, Polynomial Interpolation and the Chinese Remainder Theorem for Algebraic Systems, Math. Z. 143 (1975), 165-174. Zbl0292.08004
  2. [2] V.G. Bodnarcuk, L.A. Kaluznin, V.N. Kotov, and B.A. Romov, Galois theory for Post algebras, I and II (Russian), Kibernetika (Kiev) 5 (1969), no. 3 p. 1-10 and no. 5, p. 1-9. 
  3. [3] B. Csákány, Homogeneous algebras are functionally complete, AlgebraUniversalis 11 (1980), 149-158. Zbl0451.08004
  4. [4] A.L. Foster, An existence theorem for functionally complete universalalgebras, Math. Z. 71 (1959), 69-82. Zbl0084.26001
  5. [5] E. Fried and A.F. Pixley, The dual discriminator function in universalalgebra, Acta Sci. Math. (Szeged) 41 (1979), 83-100. Zbl0395.08001
  6. [6] D. Geiger, Closed systems of functions and predicates, Pacific J. Math. 27 (1968), 95-100. Zbl0186.02502
  7. [7] Th. Ihringer, Allgemeine Algebra, Teubner-Verlag, Stuttgart 1993. 
  8. [8] S.W. Jablonski and O.B. Lupanow, (eds.), Diskrete Mathematik und mathematische Fragen der Kybernetik, Akademie-Verlag, Berlin 1980. 
  9. [9] P.H. Krauss, On primal algebras, Algebra Universalis 2 (1972), 62-67. Zbl0265.08001
  10. [10] P.H. Krauss, On quasi primal algebras, Math. Z. 134 (1973), 85-89. Zbl0257.08004
  11. [11] R. Pöschel and L.A. Kaluznin, Funktionen- und Relationenalgebren, Deutschen Verlag der Wissenschaften, Berlin 1979. 
  12. [12] W. Sierpiński, Sur les fonctions de plusieurs variables, Fund. Math. 33 (1945), 169-173. Zbl0060.13111
  13. [13] J. Słupecki, Completeness criterion for systems of many-valued propositional calculus (in Polish), C.R. des Séances de la Societé des Sciences et des Lettres de Varsovie Cl. II 32 (1939), 102-109., (English transl.: Studia Logica 30 (972), 153-157. 
  14. [14] Á. Szendrei, Clones in Universal Algebra, Les Presses de l'Université de Montréal, Montreal 1986. 
  15. [15] H. Werner, Discriminator-Algebras, Akademie-Verlag, Berlin 1978. 
  16. [16] H. Werner, Eine Characterisierung funktional vollstandiger Algebren, Arch. Math. (Basel) 21 (1970), 381-385. Zbl0211.32003
  17. [17] S.V. Yablonski, Functional construction in the k-valued logic (Russian), Trudy Math. Inst. Steklov 51 (1958), 5-142. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.