On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions
Discussiones Mathematicae - General Algebra and Applications (2001)
- Volume: 21, Issue: 2, page 139-163
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topHans-Jürgen Vogel. "On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions." Discussiones Mathematicae - General Algebra and Applications 21.2 (2001): 139-163. <http://eudml.org/doc/287740>.
@article{Hans2001,
abstract = {The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family $d = (d_\{A\}: A → A⨂ A | A ∈ |Rel|)$ of diagonal morphisms, a family $t = (t_\{A\}: A → I | A ∈ |Rel|)$ of terminal morphisms, and a family $∇ = (∇_\{A\}: A ⨂ A → A | A ∈ |Rel|)$ of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category). Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for hdht∇s-categories consisting of identities only. Therefore, the class of all small hdht∇-symmetric categories (interpreted as hetrogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.},
author = {Hans-Jürgen Vogel},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {halfdiagonal-halfterminal-symmetric category; diagonal inversion; partial order relation; subidentity; equation; halfdiagonal-halfterminal-symmetric monoidal category; diagonal inversions},
language = {eng},
number = {2},
pages = {139-163},
title = {On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions},
url = {http://eudml.org/doc/287740},
volume = {21},
year = {2001},
}
TY - JOUR
AU - Hans-Jürgen Vogel
TI - On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2001
VL - 21
IS - 2
SP - 139
EP - 163
AB - The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family $d = (d_{A}: A → A⨂ A | A ∈ |Rel|)$ of diagonal morphisms, a family $t = (t_{A}: A → I | A ∈ |Rel|)$ of terminal morphisms, and a family $∇ = (∇_{A}: A ⨂ A → A | A ∈ |Rel|)$ of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category). Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for hdht∇s-categories consisting of identities only. Therefore, the class of all small hdht∇-symmetric categories (interpreted as hetrogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.
LA - eng
KW - halfdiagonal-halfterminal-symmetric category; diagonal inversion; partial order relation; subidentity; equation; halfdiagonal-halfterminal-symmetric monoidal category; diagonal inversions
UR - http://eudml.org/doc/287740
ER -
References
top- [1] L. B and H.-J. H, Automaten und Funktoren, Akademie-Verlag, Berlin 1975.
- [2] S. E and G.M. K, Closed categories, 'Proceedings of the Conference on Categorical Algebra (La Jolla, 1965)', Springer-Verlag, New York 1966, 421-562.
- [3] H.-J. H, On partial algebras, Colloquia Mathematica Societatis János Bolyai, 29 ('Universal Algebra, Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1981, 373-412.
- [4] G.M. K, On MacLane's condition for coherence of natural associativities, commutativities, etc, J. Algebra 1 (1964), 397-402. Zbl0246.18008
- [5] S. M, Kategorien, Begriffssprache und mathematische Theorie, Springer-Verlag, Berlin-New York 1972.
- [6] J. S, Über dht-symmetrische Kategorien, Semesterarbeit Päd. Hochschule Köthen, Köthen 1978.
- [7] J. S, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, AdW DDR Berlin, Zentralinstitut f. Mathematik und Mechanik, Preprint P-12/8 (1980). Zbl0442.18002
- [8] J. S, Zur Theorie der dht-symmetrischen Kategorien, Dissertation (B), eingereicht an der Math.-Naturwiss. Fak. d. Wiss. Rates d. Pädag. Hochschule 'Karl Liebknecht', Potsdam 1984.
- [9] J. S, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. (Halle/Saale) 24 (1987), 83-98.
- [10] H.-J. V, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, AdW DDR, Institut f. Mathematik, Report R-MATH-06/84, Berlin (1984).
- [11] H.-J. V, Relations as morphisms of a certain monoidal category, 'General Algebra and Applications in Discrete Mathematics', Shaker Verlag, Aachen 1997, 205-217.
- [12] H.-J. V, On functors between dhtŃ-symmetric categories, Discuss. Math. - Algebra & Stochastic Methods 18 (1998), 131-147. Zbl0921.18005
- [13] H.-J. V, On Properties of dhtŃ-symmetric categories, Contributions to General Algebra 11 (1999), 211-223.
- [14] H.-J. V, Halfdiagonal-halfterminal-symmetric monoidal categories with inversions, 'General Algebra and Discrete Mathematics', Shaker Verlag, Aachen 1999, 189-204.
- [15] H.-J. V, On morphisms between prtial algebras, 'Algebras and Combinatorics. An International Congress, ICAC '97, Hong Kong', Springer-Verlag, Singapore 1999, 427-453. Zbl0968.08003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.