Categories of functors between categories with partial morphisms

Hans-Jürgen Vogel

Discussiones Mathematicae - General Algebra and Applications (2005)

  • Volume: 25, Issue: 1, page 39-87
  • ISSN: 1509-9415

Abstract

top
It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.

How to cite

top

Hans-Jürgen Vogel. "Categories of functors between categories with partial morphisms." Discussiones Mathematicae - General Algebra and Applications 25.1 (2005): 39-87. <http://eudml.org/doc/287644>.

@article{Hans2005,
abstract = {It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.},
author = {Hans-Jürgen Vogel},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {symmetric monoidal category; dhts-category; Hoehnke category; Hoehnke theory; monoidal functor; d-monoidal functor; dht-symmetric functor; functor composition; cartesian product; -category; Hoehnke category: Hoehnke theory; -monoidal functor; -symmetric functor; Cartesian product},
language = {eng},
number = {1},
pages = {39-87},
title = {Categories of functors between categories with partial morphisms},
url = {http://eudml.org/doc/287644},
volume = {25},
year = {2005},
}

TY - JOUR
AU - Hans-Jürgen Vogel
TI - Categories of functors between categories with partial morphisms
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2005
VL - 25
IS - 1
SP - 39
EP - 87
AB - It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.
LA - eng
KW - symmetric monoidal category; dhts-category; Hoehnke category; Hoehnke theory; monoidal functor; d-monoidal functor; dht-symmetric functor; functor composition; cartesian product; -category; Hoehnke category: Hoehnke theory; -monoidal functor; -symmetric functor; Cartesian product
UR - http://eudml.org/doc/287644
ER -

References

top
  1. [1] A. Asperti and G. Longo, Categories of partial morphisms and the relation between type structures, Banach Semester 1985, Nota Scientifica, 7-85, University of Pisa, 1986. 
  2. [2] P.-L. Curien and A. Obtuowicz, Partiality, cartesian closedness, and toposes, Inform. and Comput. 80 (1989), 50-95. Zbl0674.18001
  3. [3] R.A. Di Paola and A. Heller, Dominical categories: recursion theory without elements, J. Symbolic Logic 52 (1997), 594-635. Zbl0649.03032
  4. [4] S. Eilenberg and G.M. Kelly, Closed categories, 'Procedings of the Conference on Categorical Algebra (La Jolla, 1965)', Springer-Verlag, New York 1966, 421-562. Zbl0192.10604
  5. [5] A. Heller, Dominical categories, 'Atti della Scuola di Logica di Siena', University di Siena 1982, 373-412. 
  6. [6] A. Heller, Dominical categories and recursion theory, 'Procedings of the Conference on Mathematical Logic', Vol 2, University of Siena, Siena 1985, 339-344. Zbl0592.03032
  7. [7] H.-J. Hoehnke, Allgemeine Algebra der Automaten, 'Automaten und Funktoren', by L. Budach and H.-J. Hoehnke, Akademie-Verlag, Berlin 1975. 
  8. [8] H.-J. Hoehnke, On partial algebras, Colloq. Math. Soc. J. Bolyai, Vol. 29 ('Universal Algebra; Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1982, 373-412. 
  9. [9] H.-J. Hoehnke, On Yoneda-Schreckenberger's embedding of the class of monoidal categories, 'Proceedings of the Conference on Theory and Applications of Semigroups (Greifswald 1984)', Math. Gesellsch.d. DDR, Berlin 1985, 19-43. Zbl0654.18001
  10. [10] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. I, ' Universal and Applied Algebra, (Turawa 1988)', World Sci. Publishing, Singapore 1989, 149-176. Zbl0805.18006
  11. [11] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. II, Preprint P-MATH-3/89, Akad. d. Wiss. d. DDR, Karl-Weierstrass-Inst. f. Math., Berlin 1989. Zbl0805.18007
  12. [12] H.-J. Hoehnke, On certain classes of categories and monoids constructed from abstract Mal'cev clones. IV, 'General Algebra and Discrete Mathematics', Heldermann Verlag, Lemgo 1995, 137-167. Zbl0819.18003
  13. [13] G. Longo and E. Moggi, Cartesian closed categories of enumerations foreffective type structures, Lectrure Notes in Comp. Sci. 173, ('Semantics of Data Types'), Springer-Verlag, Berlin 1984, 235-255. 
  14. [14] A. Obtuowicz, The logic of categories of partial functions and its applications, Dissertationes Math. (Rozprawy Math.) 241 (1986), 1-164. 
  15. [15] E.P. Robinson and G. Rosolini, Categories of partial maps, Inform. and Comput. 79 (1988), 95-130. Zbl0656.18001
  16. [16] G. Rosolini, Domains and dominical categories, Riv. Math. Univ. Parma (4) 11 (1985), 387-397. Zbl0606.03011
  17. [17] G. Rosolini, Continuity and Effectiveness in Topoi, Ph.D. Thesis, University of Oxford, 1986. 
  18. [18] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, Preprint P-12/80, Zentralinst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1980. Zbl0442.18002
  19. [19] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Disseration (B), Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam 1984. 
  20. [20] J. Schreckenberger, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. 24 (1987), 83-98. 
  21. [21] J. Schreckenberger, Mehrfache Partialisierung von Kategorien, Beiträge Algebra Geom. 25 (1987), 109-122. Zbl0622.18001
  22. [22] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, Report R-Math-06/84, Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1984. Zbl0554.18004
  23. [23] H.-J. Vogel, Relations as morphisms of a certain monoidal category, 'General Algebra and Applications in Discrete Mathematics', Shaker Verlag, Aachen 1997, 205-216. 
  24. [24] H.-J. Vogel, On functors between dht∇-symmetric categories, Discuss. Math.- Algebra and Stochastic Methods 18 (1998), 131-147. Zbl0921.18005
  25. [25] H.-J. Vogel, On the structure of halfdiagonal-halfterminal symmetric categories with diagonal inversions, Discuss. Math.- Gen. Algebra and Appl. 21 (2001), 139-163. Zbl0998.18003
  26. [26] H.-J. Vogel, Algebraic theories for Birkhoff-algebras, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.