Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds

M. S. Santos

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 1, page 79-86
  • ISSN: 0010-2628

Abstract

top
In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.

How to cite

top

Santos, M. S.. "Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 79-86. <http://eudml.org/doc/287866>.

@article{Santos2017,
abstract = {In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.},
author = {Santos, M. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bakry-Emery Ricci curvature tensor; closure theorem; Riccati equation},
language = {eng},
number = {1},
pages = {79-86},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds},
url = {http://eudml.org/doc/287866},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Santos, M. S.
TI - Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 79
EP - 86
AB - In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.
LA - eng
KW - Bakry-Emery Ricci curvature tensor; closure theorem; Riccati equation
UR - http://eudml.org/doc/287866
ER -

References

top
  1. Bakry D., Emery E., Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pp. 177–206. Zbl0561.60080MR0889476
  2. Bakry D., Ledoux M., Sobolev inequalities and Myers diameter theorem for an abstract Markov generator, Duke Math. J. 81 (1996), no. 1, 252–270. MR1412446
  3. Beem J., Ehrlich P., Easley K., Global Lorentzian Geometry, 2nd edn., Marcel Dekker, New York, 1996. Zbl0846.53001MR1384756
  4. Case J., 10.1016/j.geomphys.2009.11.001, J. Geom. Phys. 60 (2010), no. 3, 477–490. Zbl1188.53075MR2600009DOI10.1016/j.geomphys.2009.11.001
  5. Cavalcante M.P., Oliveira J.Q., Santos M.S., 10.1007/s00025-014-0427-x, Results Math. 68 (2015), 143–156. Zbl1327.53037MR3391497DOI10.1007/s00025-014-0427-x
  6. Frankel T., Gravitation Curvature. An Introduction to Einstein's Theory, W.H. Freeman and Co., San Francisco, Calif., 1979. MR0518868
  7. Frankel T., Galloway G., 10.1063/1.524961, J. Math. Phys. 22 (1981), no. 4, 813–817. Zbl0483.76135MR0617327DOI10.1063/1.524961
  8. Galloway G.J., 10.4310/jdg/1214434856, J. Differential Geom. 14 (1979), 105–116. Zbl0444.53036MR0577883DOI10.4310/jdg/1214434856
  9. Galloway G.J., Woolgar E., Cosmological singularities in Bakry-Émery space-times, preprint, 2013. MR3282334
  10. Ledoux M., 10.5802/afst.962, Ann. Fac. Sci. Toulouse Math. 9 (2000), no. 2, 305–366. Zbl0980.60097MR1813804DOI10.5802/afst.962
  11. Limoncu M., 10.1007/s00209-011-0886-7, Math. Z. 271 (2012), 715–722. Zbl1264.53042MR2945580DOI10.1007/s00209-011-0886-7
  12. Limoncu M., 10.1007/s00013-010-0150-0, Arch. Math. (Basel) 95 (2010), 191–199. MR2674255DOI10.1007/s00013-010-0150-0
  13. Lott J., 10.1007/s00014-003-0775-8, Comment. Math. Helv. 78 (2003), no. 4, 865–883. Zbl1038.53041MR2016700DOI10.1007/s00014-003-0775-8
  14. Morgan F., 10.2996/kmj/1162478772, Kodai Math. J. 29 (2006), no. 3, 454–461. Zbl1132.53306MR2278776DOI10.2996/kmj/1162478772
  15. Myers S.B., 10.1215/S0012-7094-41-00832-3, Duke Math. J. 8 (1941) 401–404. Zbl0025.22704MR0004518DOI10.1215/S0012-7094-41-00832-3
  16. Qian Z., 10.1093/qmath/48.2.235, Quart. J. Math. Oxford 48 (1997), 235–242. Zbl0902.53032MR1458581DOI10.1093/qmath/48.2.235
  17. Rimoldi M., 10.2140/pjm.2011.252.207, Pacific J. Math. 252 (2011), no. 1, 207–218. Zbl1232.53036MR2862148DOI10.2140/pjm.2011.252.207
  18. Ringström H., On the Topology and Future Stability of the Universe, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2013. Zbl1270.83005MR3186493
  19. Rupert M., Woolgar E., 10.1088/0264-9381/31/2/025008, Classical Quantum Gravity 31 (2014), no. 2, 025008. Zbl1302.83023MR3157702DOI10.1088/0264-9381/31/2/025008
  20. Sprouse S., 10.4310/CAG.2000.v8.n3.a4, Comm. Anal. Geom. 8 (2000), 531–543. Zbl0984.53018MR1775137DOI10.4310/CAG.2000.v8.n3.a4
  21. Wei G., Wylie W., Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377–405. Zbl1189.53036MR2577473
  22. Woolgar E., 10.1088/0264-9381/30/8/085007, Classical Quantum Gravity 30 (2013) 085007. Zbl1267.83094MR3044364DOI10.1088/0264-9381/30/8/085007
  23. Yun J.-G., 10.4134/BKMS.2009.46.1.061, Bull. Korean Math. Soc. 46 (2009), no. 1, 61–66. Zbl1176.53045MR2488500DOI10.4134/BKMS.2009.46.1.061
  24. Zhang S., 10.1007/s10455-013-9396-7, Ann. Global Anal. Geom. 45 (2014), no. 3, 233–238. Zbl1292.53027MR3170524DOI10.1007/s10455-013-9396-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.