Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 1, page 79-86
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSantos, M. S.. "Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 79-86. <http://eudml.org/doc/287866>.
@article{Santos2017,
abstract = {In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.},
author = {Santos, M. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bakry-Emery Ricci curvature tensor; closure theorem; Riccati equation},
language = {eng},
number = {1},
pages = {79-86},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds},
url = {http://eudml.org/doc/287866},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Santos, M. S.
TI - Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 79
EP - 86
AB - In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.
LA - eng
KW - Bakry-Emery Ricci curvature tensor; closure theorem; Riccati equation
UR - http://eudml.org/doc/287866
ER -
References
top- Bakry D., Emery E., Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pp. 177–206. Zbl0561.60080MR0889476
- Bakry D., Ledoux M., Sobolev inequalities and Myers diameter theorem for an abstract Markov generator, Duke Math. J. 81 (1996), no. 1, 252–270. MR1412446
- Beem J., Ehrlich P., Easley K., Global Lorentzian Geometry, 2nd edn., Marcel Dekker, New York, 1996. Zbl0846.53001MR1384756
- Case J., 10.1016/j.geomphys.2009.11.001, J. Geom. Phys. 60 (2010), no. 3, 477–490. Zbl1188.53075MR2600009DOI10.1016/j.geomphys.2009.11.001
- Cavalcante M.P., Oliveira J.Q., Santos M.S., 10.1007/s00025-014-0427-x, Results Math. 68 (2015), 143–156. Zbl1327.53037MR3391497DOI10.1007/s00025-014-0427-x
- Frankel T., Gravitation Curvature. An Introduction to Einstein's Theory, W.H. Freeman and Co., San Francisco, Calif., 1979. MR0518868
- Frankel T., Galloway G., 10.1063/1.524961, J. Math. Phys. 22 (1981), no. 4, 813–817. Zbl0483.76135MR0617327DOI10.1063/1.524961
- Galloway G.J., 10.4310/jdg/1214434856, J. Differential Geom. 14 (1979), 105–116. Zbl0444.53036MR0577883DOI10.4310/jdg/1214434856
- Galloway G.J., Woolgar E., Cosmological singularities in Bakry-Émery space-times, preprint, 2013. MR3282334
- Ledoux M., 10.5802/afst.962, Ann. Fac. Sci. Toulouse Math. 9 (2000), no. 2, 305–366. Zbl0980.60097MR1813804DOI10.5802/afst.962
- Limoncu M., 10.1007/s00209-011-0886-7, Math. Z. 271 (2012), 715–722. Zbl1264.53042MR2945580DOI10.1007/s00209-011-0886-7
- Limoncu M., 10.1007/s00013-010-0150-0, Arch. Math. (Basel) 95 (2010), 191–199. MR2674255DOI10.1007/s00013-010-0150-0
- Lott J., 10.1007/s00014-003-0775-8, Comment. Math. Helv. 78 (2003), no. 4, 865–883. Zbl1038.53041MR2016700DOI10.1007/s00014-003-0775-8
- Morgan F., 10.2996/kmj/1162478772, Kodai Math. J. 29 (2006), no. 3, 454–461. Zbl1132.53306MR2278776DOI10.2996/kmj/1162478772
- Myers S.B., 10.1215/S0012-7094-41-00832-3, Duke Math. J. 8 (1941) 401–404. Zbl0025.22704MR0004518DOI10.1215/S0012-7094-41-00832-3
- Qian Z., 10.1093/qmath/48.2.235, Quart. J. Math. Oxford 48 (1997), 235–242. Zbl0902.53032MR1458581DOI10.1093/qmath/48.2.235
- Rimoldi M., 10.2140/pjm.2011.252.207, Pacific J. Math. 252 (2011), no. 1, 207–218. Zbl1232.53036MR2862148DOI10.2140/pjm.2011.252.207
- Ringström H., On the Topology and Future Stability of the Universe, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2013. Zbl1270.83005MR3186493
- Rupert M., Woolgar E., 10.1088/0264-9381/31/2/025008, Classical Quantum Gravity 31 (2014), no. 2, 025008. Zbl1302.83023MR3157702DOI10.1088/0264-9381/31/2/025008
- Sprouse S., 10.4310/CAG.2000.v8.n3.a4, Comm. Anal. Geom. 8 (2000), 531–543. Zbl0984.53018MR1775137DOI10.4310/CAG.2000.v8.n3.a4
- Wei G., Wylie W., Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377–405. Zbl1189.53036MR2577473
- Woolgar E., 10.1088/0264-9381/30/8/085007, Classical Quantum Gravity 30 (2013) 085007. Zbl1267.83094MR3044364DOI10.1088/0264-9381/30/8/085007
- Yun J.-G., 10.4134/BKMS.2009.46.1.061, Bull. Korean Math. Soc. 46 (2009), no. 1, 61–66. Zbl1176.53045MR2488500DOI10.4134/BKMS.2009.46.1.061
- Zhang S., 10.1007/s10455-013-9396-7, Ann. Global Anal. Geom. 45 (2014), no. 3, 233–238. Zbl1292.53027MR3170524DOI10.1007/s10455-013-9396-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.