A characterization of the Riemann extension in terms of harmonicity
Cornelia-Livia Bejan; Şemsi Eken
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 197-206
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBejan, Cornelia-Livia, and Eken, Şemsi. "A characterization of the Riemann extension in terms of harmonicity." Czechoslovak Mathematical Journal 67.1 (2017): 197-206. <http://eudml.org/doc/287883>.
@article{Bejan2017,
abstract = {If $(M,\nabla )$ is a manifold with a symmetric linear connection, then $T^\{*\}M$ can be endowed with the natural Riemann extension $\bar\{g\}$ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to $\bar\{g\}$ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure $\mathcal \{P\}$ on $(T^\{*\}M,\bar\{g\})$ and prove that $\mathcal \{P\}$ is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if $\bar\{g\}$ reduces to the classical Riemann extension introduced by E. M. Patterson and A. G. Walker (1952).},
author = {Bejan, Cornelia-Livia, Eken, Şemsi},
journal = {Czechoslovak Mathematical Journal},
keywords = {semi-Riemannian manifold; cotangent bundle; natural Riemann extension; harmonic tensor field},
language = {eng},
number = {1},
pages = {197-206},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A characterization of the Riemann extension in terms of harmonicity},
url = {http://eudml.org/doc/287883},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Bejan, Cornelia-Livia
AU - Eken, Şemsi
TI - A characterization of the Riemann extension in terms of harmonicity
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 197
EP - 206
AB - If $(M,\nabla )$ is a manifold with a symmetric linear connection, then $T^{*}M$ can be endowed with the natural Riemann extension $\bar{g}$ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to $\bar{g}$ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure $\mathcal {P}$ on $(T^{*}M,\bar{g})$ and prove that $\mathcal {P}$ is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if $\bar{g}$ reduces to the classical Riemann extension introduced by E. M. Patterson and A. G. Walker (1952).
LA - eng
KW - semi-Riemannian manifold; cotangent bundle; natural Riemann extension; harmonic tensor field
UR - http://eudml.org/doc/287883
ER -
References
top- Bejan, C.-L., A classification of the almost para-Hermitian manifolds, Differential Geometry and Its Applications N. Bokan et al. Proc. of the Conf. Dubrovnik, 1988, Univ. Novi Sad, Inst. of Mathematics, Novi Sad (1989), 23-27. (1989) Zbl0683.53034MR1040052
- Bejan, C.-L., The existence problem of hyperbolic structures on vector bundles, Publ. Inst. Math., Nouv. Sér. 53 (67) (1993), 133-138. (1993) Zbl0796.53029MR1319766
- Bejan, C.-L., Some examples of manifolds with hyperbolic structures, Rend. Mat. Appl. (7) 14 (1994), 557-565. (1994) Zbl0818.53041MR1312817
- Bejan, C.-L., Druţă-Romaniuc, S.-L., 10.1007/s00009-013-0302-0, Mediterr. J. Math. 11 (2014), 123-136. (2014) Zbl1317.53041MR3160617DOI10.1007/s00009-013-0302-0
- Bejan, C.-L., Kowalski, O., 10.1007/s10455-015-9463-3, Ann. Global Anal. Geom. 48 (2015), 171-180. (2015) Zbl06477614MR3376878DOI10.1007/s10455-015-9463-3
- Calviño-Louzao, E., García-Río, E., Gilkey, P., Vázquez-Lorenzo, R., 10.1098/rspa.2009.0046, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 (2009), 2023-2040. (2009) Zbl1186.53056MR2515628DOI10.1098/rspa.2009.0046
- Cruceanu, V., Fortuny, P., Gadea, P. M., 10.1216/rmjm/1181072105, Rocky Mt. J. Math. 26 (1996), 83-115. (1996) Zbl0856.53049MR1386154DOI10.1216/rmjm/1181072105
- García-Río, E., Vanhecke, L., Vázquez-Abal, M. E., 10.1215/ijm/1255985842, Illinois J. Math. 41 (1997), 23-30. (1997) Zbl0880.53032MR1433184DOI10.1215/ijm/1255985842
- Gezer, A., Bilen, L., Çakmak, A., 10.15407/mag11.02.159, Zh. Mat. Fiz. Anal. Geom. 11 (2015), 159-173. (2015) Zbl1329.53046MR3442843DOI10.15407/mag11.02.159
- Kolář, I., Michor, P. W., Slovák, J., 10.1007/978-3-662-02950-3, Springer, Berlin (1993). (1993) Zbl0782.53013MR1202431DOI10.1007/978-3-662-02950-3
- Kowalski, O., Sekizawa, M., 10.5486/PMD.2011.4992, Publ. Math. Debrecen 78 (2011), 709-721. (2011) Zbl1240.53051MR2867212DOI10.5486/PMD.2011.4992
- Kowalski, O., Sekizawa, M., 10.1016/difgeo.2012.10.007, Differ. Geom. Appl. 31 (2013), 140-149. (2013) Zbl1277.53016MR3010084DOI10.1016/difgeo.2012.10.007
- Patterson, E. M., Walker, A. G., 10.1093/qmath/3.1.19, Q. J. Math., Oxf. Ser. (2) 3 (1952), 19-28. (1952) Zbl0048.15603MR0048131DOI10.1093/qmath/3.1.19
- Salimov, A., Gezer, A., Aslancı, S., 10.3906/mat-0901-31, Turk. J. Math. 35 (2011), 487-492. (2011) Zbl1232.53030MR2867333DOI10.3906/mat-0901-31
- Sekizawa, M., On complete lifts of reductive homogeneous spaces and generalized symmetric spaces, Czech. Math. J. 36 (111) (1986), 516-534. (1986) Zbl0615.53042MR0863184
- Sekizawa, M., Natural transformations of affine connections on manifolds to metrics on cotangent bundles, Proc. 14th Winter School Srn’ ı, Czech, 1986, Suppl. Rend. Circ. Mat. Palermo, Ser. (2) (1987), 129-142. (1987) Zbl0635.53012MR0920851
- Willmore, T. J., An Introduction to Differential Geometry, Clarendon Press, Oxford (1959). (1959) Zbl0086.14401MR0159265
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles. Differential Geometry, Pure and Applied Mathematics 16, Marcel Dekker, New York (1973). (1973) Zbl0262.53024MR0350650
- Yano, K., Patterson, E. M., 10.2969/jmsj/01910091, J. Math. Soc. Japan 19 (1967), 91-113. (1967) Zbl0149.19002MR0206868DOI10.2969/jmsj/01910091
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.