Displaying similar documents to “A characterization of the Riemann extension in terms of harmonicity”

A remark on separate holomorphy

Marek Jarnicki, Peter Pflug (2006)

Studia Mathematica

Similarity:

Let X be a Riemann domain over k × . If X is a domain of holomorphy with respect to a family ℱ ⊂(X), then there exists a pluripolar set P k such that every slice X a of X with a∉ P is a region of holomorphy with respect to the family f | X a : f .

The vertical prolongation of the projectable connections

Anna Bednarska (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We prove that any first order 2 m 1 , m 2 , n 1 , n 2 -natural operator transforming projectable general connections on an ( m 1 , m 2 , n 1 , n 2 ) -dimensional fibred-fibred manifold p = ( p , p ) : ( p Y : Y Y ) ( p M : M M ) into general connections on the vertical prolongation V Y M of p : Y M is the restriction of the (rather well-known) vertical prolongation operator 𝒱 lifting general connections Γ ¯ on a fibred manifold Y M into 𝒱 Γ ¯ (the vertical prolongation of Γ ¯ ) on V Y M .

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz Mikulski (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

If ( M , g ) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism T M = ˜ T * M given by v g ( v , - ) between the tangent T M and the cotangent T * M bundles of M . In the present note, we generalize this isomorphism to the one T ( r ) M = ˜ T r * M between the r -th order vector tangent T ( r ) M = ( J r ( M , R ) 0 ) * and the r -th order cotangent T r * M = J r ( M , R ) 0 bundles of M . Next, we describe all base preserving  vector bundle maps C M ( g ) : T ( r ) M T r * M depending on a Riemannian metric g in terms of natural (in g ) tensor fields on M .

Grauert's line bundle convexity, reduction and Riemann domains

Viorel Vâjâitu (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider a convexity notion for complex spaces X with respect to a holomorphic line bundle L over X . This definition has been introduced by Grauert and, when L is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if H 0 ( X , L ) separates each point of X , then X can be realized as a Riemann domain over the complex projective...

On lifts of projectable-projectable classical linear connections to the cotangent bundle

Anna Bednarska (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We describe all 2 m 1 , m 2 , n 1 , n 2 -natural operators D : Q p r o j - p r o j τ Q T * transforming projectable-projectable classical torsion-free linear connections on fibred-fibred manifolds Y into classical linear connections D ( ) on cotangent bundles T * Y of Y . We show that this problem can be reduced to finding 2 m 1 , m 2 , n 1 , n 2 -natural operators D : Q p r o j - p r o j τ ( T * , p T * q T ) for p = 2 , q = 1 and p = 3 , q = 0 .

The general rigidity result for bundles of A -covelocities and A -jets

Jiří M. Tomáš (2017)

Czechoslovak Mathematical Journal

Similarity:

Let M be an m -dimensional manifold and A = 𝔻 k r / I = N A a Weil algebra of height r . We prove that any A -covelocity T x A f T x A * M , x M is determined by its values over arbitrary max { width A , m } regular and under the first jet projection linearly independent elements of T x A M . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A * M T r * M without coordinate computations, which improves and generalizes the partial...

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

An effective proof of the hyperelliptic Shafarevich conjecture

Rafael von Känel (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let C be a hyperelliptic curve of genus g 1 over a number field K with good reduction outside a finite set of places S of K . We prove that C has a Weierstrass model over the ring of integers of K with height effectively bounded only in terms of g , S and K . In particular, we obtain that for any given number field K , finite set of places S of K and integer g 1 one can in principle determine the set of K -isomorphism classes of hyperelliptic curves over K of genus g with good reduction outside...

Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital C * -algebras

Kazunori Kodaka (2022)

Mathematica Bohemica

Similarity:

Let 𝒜 = { A t } t G and = { B t } t G be C * -algebraic bundles over a finite group G . Let C = t G A t and D = t G B t . Also, let A = A e and B = B e , where e is the unit element in G . We suppose that C and D are unital and A and B have the unit elements in C and D , respectively. In this paper, we show that if there is an equivalence 𝒜 - -bundle over G with some properties, then the unital inclusions of unital C * -algebras A C and B D induced by 𝒜 and are strongly Morita equivalent. Also, we suppose that 𝒜 and are saturated and that A ' C = 𝐂 1 . We show that...

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Similarity:

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k Φ i 1 ( z 0 ) , [ Φ i 1 , Φ i 2 ] ( z 0 ) , [ [ Φ i 1 , Φ i 2 ] , Φ i 3 ] ( z 0 ) , ... ( h , i h k + 1 ) belong to T z 0 𝕄 . Such a property has been proved in [9] for k = 1 and its proof in the...