Boundedness of para-product operators on spaces of homogeneous type

Yayuan Xiao

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 1, page 235-252
  • ISSN: 0011-4642

Abstract

top
We obtain the boundedness of Calderón-Zygmund singular integral operators T of non-convolution type on Hardy spaces H p ( 𝒳 ) for 1 / ( 1 + ϵ ) < p 1 , where 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss (1971), and ϵ is the regularity exponent of the kernel of the singular integral operator T . Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature.

How to cite

top

Xiao, Yayuan. "Boundedness of para-product operators on spaces of homogeneous type." Czechoslovak Mathematical Journal 67.1 (2017): 235-252. <http://eudml.org/doc/287884>.

@article{Xiao2017,
abstract = {We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal \{X\})$ for $ 1/\{(1+\epsilon )\}<p\le 1$, where $\{\mathcal \{X\}\}$ is a space of homogeneous type in the sense of Coifman and Weiss (1971), and $\epsilon $ is the regularity exponent of the kernel of the singular integral operator $T$. Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature.},
author = {Xiao, Yayuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundedness; Calderón-Zygmund singular integral operator; para-product; spaces of homogeneous type},
language = {eng},
number = {1},
pages = {235-252},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of para-product operators on spaces of homogeneous type},
url = {http://eudml.org/doc/287884},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Xiao, Yayuan
TI - Boundedness of para-product operators on spaces of homogeneous type
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 235
EP - 252
AB - We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal {X})$ for $ 1/{(1+\epsilon )}<p\le 1$, where ${\mathcal {X}}$ is a space of homogeneous type in the sense of Coifman and Weiss (1971), and $\epsilon $ is the regularity exponent of the kernel of the singular integral operator $T$. Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature.
LA - eng
KW - boundedness; Calderón-Zygmund singular integral operator; para-product; spaces of homogeneous type
UR - http://eudml.org/doc/287884
ER -

References

top
  1. Christ, M., 10.4064/cm-60-61-2-601-628, Colloq. Math. 60/61 (1990), 601-628. (1990) Zbl0758.42009MR1096400DOI10.4064/cm-60-61-2-601-628
  2. Coifman, R. R., Weiss, G., 10.1007/BFb0058946, Lecture Notes in Mathematics 242, Springer, Berlin French (1971). (1971) Zbl0224.43006MR0499948DOI10.1007/BFb0058946
  3. Coifman, R. R., Weiss, G., 10.1090/S0002-9904-1977-14325-5, Bull. Am. Math. Soc. 83 (1977), 569-645. (1977) Zbl0358.30023MR0447954DOI10.1090/S0002-9904-1977-14325-5
  4. David, G., Journé, J.-L., Semmes, S., 10.4171/RMI/17, Rev. Mat. Iberoam. 1 (1985), 1-56. (1985) Zbl0604.42014MR0850408DOI10.4171/RMI/17
  5. Deng, D., Han, Y., 10.1007/978-3-540-88745-4, Lecture Notes in Mathematics 1966, Springer, Berlin (2009). (2009) Zbl1158.43002MR2467074DOI10.1007/978-3-540-88745-4
  6. Fefferman, C., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) Zbl0257.46078MR0447953DOI10.1007/BF02392215
  7. Frazier, M., Jawerth, B., 10.1016/0022-1236(90)90137-A, J. Funct. Anal. 93 (1990), 34-170. (1990) Zbl0716.46031MR1070037DOI10.1016/0022-1236(90)90137-A
  8. Han, Y., 10.4171/RMI/145, Rev. Mat. Iberoam. 10 (1994), 51-91. (1994) Zbl0797.42009MR1271757DOI10.4171/RMI/145
  9. Han, Y., 10.1007/s101140050021, Acta Math. Sin., Engl. Ser. 16 (2000), 277-294. (2000) Zbl0978.42010MR1778708DOI10.1007/s101140050021
  10. Han, Y., Sawyer, E. T., 10.1090/memo/0530, Mem. Am. Math. Soc. 110 (1994), no. 530, 126 pages. (1994) Zbl0806.42013MR1214968DOI10.1090/memo/0530
  11. Macías, R. A., Segovia, C., 10.1016/0001-8708(79)90012-4, Adv. Math. 33 (1979), 257-270. (1979) Zbl0431.46018MR0546295DOI10.1016/0001-8708(79)90012-4
  12. Meyer, Y., Coifman, R., Wavelets: Calderón-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge (1997). (1997) Zbl0916.42023MR1456993
  13. Sawyer, E., Wheeden, R. L., 10.2307/2374799, Am. J. Math. 114 (1992), 813-874. (1992) Zbl0783.42011MR1175693DOI10.2307/2374799

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.