Boundedness of para-product operators on spaces of homogeneous type
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 235-252
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXiao, Yayuan. "Boundedness of para-product operators on spaces of homogeneous type." Czechoslovak Mathematical Journal 67.1 (2017): 235-252. <http://eudml.org/doc/287884>.
@article{Xiao2017,
abstract = {We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal \{X\})$ for $ 1/\{(1+\epsilon )\}<p\le 1$, where $\{\mathcal \{X\}\}$ is a space of homogeneous type in the sense of Coifman and Weiss (1971), and $\epsilon $ is the regularity exponent of the kernel of the singular integral operator $T$. Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature.},
author = {Xiao, Yayuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundedness; Calderón-Zygmund singular integral operator; para-product; spaces of homogeneous type},
language = {eng},
number = {1},
pages = {235-252},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of para-product operators on spaces of homogeneous type},
url = {http://eudml.org/doc/287884},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Xiao, Yayuan
TI - Boundedness of para-product operators on spaces of homogeneous type
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 235
EP - 252
AB - We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal {X})$ for $ 1/{(1+\epsilon )}<p\le 1$, where ${\mathcal {X}}$ is a space of homogeneous type in the sense of Coifman and Weiss (1971), and $\epsilon $ is the regularity exponent of the kernel of the singular integral operator $T$. Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature.
LA - eng
KW - boundedness; Calderón-Zygmund singular integral operator; para-product; spaces of homogeneous type
UR - http://eudml.org/doc/287884
ER -
References
top- Christ, M., 10.4064/cm-60-61-2-601-628, Colloq. Math. 60/61 (1990), 601-628. (1990) Zbl0758.42009MR1096400DOI10.4064/cm-60-61-2-601-628
- Coifman, R. R., Weiss, G., 10.1007/BFb0058946, Lecture Notes in Mathematics 242, Springer, Berlin French (1971). (1971) Zbl0224.43006MR0499948DOI10.1007/BFb0058946
- Coifman, R. R., Weiss, G., 10.1090/S0002-9904-1977-14325-5, Bull. Am. Math. Soc. 83 (1977), 569-645. (1977) Zbl0358.30023MR0447954DOI10.1090/S0002-9904-1977-14325-5
- David, G., Journé, J.-L., Semmes, S., 10.4171/RMI/17, Rev. Mat. Iberoam. 1 (1985), 1-56. (1985) Zbl0604.42014MR0850408DOI10.4171/RMI/17
- Deng, D., Han, Y., 10.1007/978-3-540-88745-4, Lecture Notes in Mathematics 1966, Springer, Berlin (2009). (2009) Zbl1158.43002MR2467074DOI10.1007/978-3-540-88745-4
- Fefferman, C., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) Zbl0257.46078MR0447953DOI10.1007/BF02392215
- Frazier, M., Jawerth, B., 10.1016/0022-1236(90)90137-A, J. Funct. Anal. 93 (1990), 34-170. (1990) Zbl0716.46031MR1070037DOI10.1016/0022-1236(90)90137-A
- Han, Y., 10.4171/RMI/145, Rev. Mat. Iberoam. 10 (1994), 51-91. (1994) Zbl0797.42009MR1271757DOI10.4171/RMI/145
- Han, Y., 10.1007/s101140050021, Acta Math. Sin., Engl. Ser. 16 (2000), 277-294. (2000) Zbl0978.42010MR1778708DOI10.1007/s101140050021
- Han, Y., Sawyer, E. T., 10.1090/memo/0530, Mem. Am. Math. Soc. 110 (1994), no. 530, 126 pages. (1994) Zbl0806.42013MR1214968DOI10.1090/memo/0530
- Macías, R. A., Segovia, C., 10.1016/0001-8708(79)90012-4, Adv. Math. 33 (1979), 257-270. (1979) Zbl0431.46018MR0546295DOI10.1016/0001-8708(79)90012-4
- Meyer, Y., Coifman, R., Wavelets: Calderón-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge (1997). (1997) Zbl0916.42023MR1456993
- Sawyer, E., Wheeden, R. L., 10.2307/2374799, Am. J. Math. 114 (1992), 813-874. (1992) Zbl0783.42011MR1175693DOI10.2307/2374799
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.