Several quantitative characterizations of some specific groups
A. Mohammadzadeh; Ali Reza Moghaddamfar
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 1, page 19-34
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMohammadzadeh, A., and Moghaddamfar, Ali Reza. "Several quantitative characterizations of some specific groups." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 19-34. <http://eudml.org/doc/287885>.
@article{Mohammadzadeh2017,
abstract = {Let $G$ be a finite group and let $\pi (G)=\lbrace p_1, p_2,\ldots , p_k\rbrace $ be the set of prime divisors of $|G|$ for which $p_1< p_2< \cdots < p_k$. The Gruenberg-Kegel graph of $G$, denoted $\operatorname\{GK\} (G)$, is defined as follows: its vertex set is $\pi (G)$ and two different vertices $p_i$ and $p_j$ are adjacent by an edge if and only if $G$ contains an element of order $p_i p_j$. The degree of a vertex $p_i$ in $\{\rm GK\}(G)$ is denoted by $d_G(p_i)$ and the $k$-tuple $D(G)= (d_G(p_1), d_G(p_2),\ldots , d_G(p_k))$ is said to be the degree pattern of $G$. Moreover, if $\omega \subseteq \pi (G)$ is the vertex set of a connected component of $\operatorname\{GK\} (G)$, then the largest $\omega $-number which divides $|G|$, is said to be an order component of $\operatorname\{GK\} (G)$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $U_4(2)$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $U_5(2)$.},
author = {Mohammadzadeh, A., Moghaddamfar, Ali Reza},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {OD-characterization of finite group; prime graph; degree pattern; simple group; $2$-Frobenius group},
language = {eng},
number = {1},
pages = {19-34},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Several quantitative characterizations of some specific groups},
url = {http://eudml.org/doc/287885},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Mohammadzadeh, A.
AU - Moghaddamfar, Ali Reza
TI - Several quantitative characterizations of some specific groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 19
EP - 34
AB - Let $G$ be a finite group and let $\pi (G)=\lbrace p_1, p_2,\ldots , p_k\rbrace $ be the set of prime divisors of $|G|$ for which $p_1< p_2< \cdots < p_k$. The Gruenberg-Kegel graph of $G$, denoted $\operatorname{GK} (G)$, is defined as follows: its vertex set is $\pi (G)$ and two different vertices $p_i$ and $p_j$ are adjacent by an edge if and only if $G$ contains an element of order $p_i p_j$. The degree of a vertex $p_i$ in ${\rm GK}(G)$ is denoted by $d_G(p_i)$ and the $k$-tuple $D(G)= (d_G(p_1), d_G(p_2),\ldots , d_G(p_k))$ is said to be the degree pattern of $G$. Moreover, if $\omega \subseteq \pi (G)$ is the vertex set of a connected component of $\operatorname{GK} (G)$, then the largest $\omega $-number which divides $|G|$, is said to be an order component of $\operatorname{GK} (G)$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $U_4(2)$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $U_5(2)$.
LA - eng
KW - OD-characterization of finite group; prime graph; degree pattern; simple group; $2$-Frobenius group
UR - http://eudml.org/doc/287885
ER -
References
top- Akbari B., Moghaddamfar A.R., 10.1142/S0218196712500518, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250051, 22 pages. Zbl1266.20037MR2974105DOI10.1142/S0218196712500518
- Akbari B., Moghaddamfar A.R., On recognition by order and degree pattern of finite simple groups, Southeast Asian Bull. Math. 39 (2015), no. 2, 163–172. Zbl1340.20031MR3363927
- Akbari B., Moghaddamfar A.R., 10.1007/s11464-014-0430-2, Front. Math. China 10 (2015), no. 1, 1–31. Zbl1321.20024MR3284941DOI10.1007/s11464-014-0430-2
- Akbari B., Moghaddamfar A.R., Simple groups which are -fold OD-characterizable, Bull. Malays. Math. Sci. Soc. 35 (2012), no. 1, 65–77. Zbl1241.20020MR2865121
- Akbari M., Moghaddamfar A.R., Rahbariyan S., 10.1142/S1005386712000338, Algebra Colloq. 19 (2012), no. 3, 473–482. Zbl1250.20010MR2999256DOI10.1142/S1005386712000338
- Alavi S.H, Daneshkhah A., 10.1007/BF02936052, J. Appl. Math. Comput. 17 (2005), no. 1–2, 245–258. Zbl1066.20012MR2108803DOI10.1007/BF02936052
- Chen G.Y., A new characterization of sporadic simple groups, Algebra Colloq. 3 (1996), no. 1, 49–58. Zbl1332.20012MR1374160
- Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985. Zbl0568.20001MR0827219
- Hoseini A.A., Moghaddamfar A.R., 10.1007/s11464-010-0011-y, Front. Math. China 5 (2010), no. 3, 541–553. Zbl1205.20029MR2660528DOI10.1007/s11464-010-0011-y
- Iranmanesh A., Alavi S.H., Khosravi B., 10.1016/S0022-4049(01)00113-X, J. Pure Appl. Algebra 170 (2002), no. 2–3, 243–254. Zbl1001.20005MR1904845DOI10.1016/S0022-4049(01)00113-X
- Iranmanesh A., Khosravi B., A characterization of where , Comment. Math. Univ. Carolin. 43 (2002), no. 1, 9–21. Zbl1068.20020MR1903303
- Khosravi A., Khosravi B., -recognizability of and where , J. Pure Appl. Algebra 199 (2005), no. 1–3, 149–165. Zbl1076.20008MR2134298
- Khosravi B., Some characterizations of related to its prime graph, Publ. Math. Debrecen 75 (2009), no. 3–4, 375–385. Zbl1207.20008MR2588212
- Khosravi Beh., Khosravi Bah., A characterization of , Kumamoto J. Math. 16 (2003), 1–11. MR1975291
- Kogani-Moghaddam R., Moghaddamfar A.R., 10.1007/s11425-011-4314-6, Sci. China Math. 55 (2012), no. 4, 701–720. Zbl1252.20010MR2903455DOI10.1007/s11425-011-4314-6
- Kondrat'ev A.S., On prime graph components of finite simple groups, Math. Sb. 180 (1989), no. 6, 787–797. Zbl0691.20013MR1015040
- Lucido M.S., Moghaddamfar A.R., 10.1515/jgth.2004.013, J. Group Theory 7 (2004), no. 3, 373–384. Zbl1058.20014MR2063403DOI10.1515/jgth.2004.013
- Mazurov V.D., 10.1023/A:1015356614025, Algebra Logic 41 (2002), no. 2, 93–110. Zbl1067.20016MR1922988DOI10.1023/A:1015356614025
- Mazurov V.D., Chen G.Y., 10.1007/s10469-008-0005-y, Algebra Logic 47 (2008), no. 1, 49–55. MR2408572DOI10.1007/s10469-008-0005-y
- Moghaddamfar A.R., 10.11650/twjm/1500405273, Taiwanese J. Math. 13 (2009), no. 1, 67–89. Zbl1230.20013MR2489308DOI10.11650/twjm/1500405273
- Moghaddamfar A.R., Recognizability of finite groups by order and degree pattern, Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 422–433. Zbl1264.20028MR2905667
- Moghaddamfar A.R., 10.1142/S0219498817500657, J. Algebra Appl., 16 (2017), no. 2, 1750065, 14 pp. DOI10.1142/S0219498817500657
- Moghaddamfar A.R., Darafsheh M.R., 10.1081/AGB-200037717, Comm. Algebra 32 (2004), no. 11, 4507–4513. Zbl1071.20019MR2102462DOI10.1081/AGB-200037717
- Moghaddamfar A.R., Rahbarian S., More on the OD-characterizability of a finite group, Algebra Colloq. 18 (2011), 663–674. MR2837003
- Moghaddamfar A.R., Rahbariyan S., A quantitative characterization of some finite simple groups through order and degree pattern, Note Mat. 34 (2014), no. 2, 91–105. Zbl1316.20024MR3315986
- Moghaddamfar A.R., Rahbarian S., 10.1080/00927872.2014.891605, Comm. Algebra 43 (2015), no. 6, 2308–2334. MR3344192DOI10.1080/00927872.2014.891605
- Moghaddamfar A.R., Zokayi A.R., 10.1142/S1005386708000424, Algebra Colloq. 15 (2008), no. 3, 449–456. MR2441479DOI10.1142/S1005386708000424
- Moghaddamfar A.R., Zokayi A.R., 10.1007/s11464-009-0037-1, Front. Math. China 4 (2009), 669–680. MR2563648DOI10.1007/s11464-009-0037-1
- Moghaddamfar A.R., Zokayi A.R., 10.1142/S1005386710000143, Algebra Colloq. 17 (2010), no. 1, 121–130. Zbl1191.20020MR2589751DOI10.1142/S1005386710000143
- Moghaddamfar A.R., Zokayi A.R., Darafsheh M.R., 10.1142/S1005386705000398, Algebra Colloq. 12 (2005), no. 3, 431–442. Zbl1072.20015MR2144997DOI10.1142/S1005386705000398
- Shao C., Shi W., Wang L., Zhang L., OD-characterization of , Journal of Suzhou University (Natural Science Edition) 24 (2008), 7–10.
- Shao C., Shi W., Wang L., Zhang L., OD-characterization of the simple group , Journal of Guangxi University (Natural Science Edition) 34 (2009), 120–122. Zbl1212.20054
- Shi W., Zhang L., 10.1007/s11464-008-0026-9, Front. Math. China 3 (2008), 461–474. Zbl1165.20010MR2425165DOI10.1007/s11464-008-0026-9
- Suzuki M., Group Theory I, Springer, Berlin-New York, 1982. Zbl0472.20001MR0648772
- Vasil'ev A.V., Gorshkov I.B., 10.1007/s11202-009-0027-2, Sib. Math. J. 50 (2009), 233–238. MR2531755DOI10.1007/s11202-009-0027-2
- Williams J.S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), no. 2, 487–513. Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
- Yan Y., Chen G.Y., OD-characterization of alternating and symmetric groups of degree and , Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 690–696. Zbl1263.20013MR2905690
- Yan Y., Chen G.Y., Zhang L.C., Xu H., 10.1007/s11401-013-0787-7, Chin. Ann. Math. Ser. B 34 (2013), no. 5, 777–790. MR3079810DOI10.1007/s11401-013-0787-7
- Zavarnitsine A.V., Exceptional action of the simple groups in the defining characteristic, Sib. Elektron. Mat. Izv. 5 (2008), 68–74. Zbl1289.20059MR2586623
- Zavarnitsine A.V., Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv. 6 (2009), 1–12. Zbl1289.20021MR2586673
- Zhang L., Shi W., 10.1142/S1005386709000273, Algebra Colloq. 16 (2009), 275–282. Zbl1182.20013MR2503250DOI10.1142/S1005386709000273
- Zhang L., Shi W., OD-characterization of almost simple groups related to , Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 441–450. MR2817102
- Zhang L., Shi W., OD-characterization of the projective special linear groups , Algebra Colloq. 19 (2012), no. 3, 509–524. Zbl1257.20012MR2999260
- Zinov'eva M.R., Kondrat'ev A.S., An example of a double Frobenius group with order components as in the simple group , Vladikavkaz. Mat. Zh. 10 (2008), no. 1, 35–36 (Russian). Zbl1324.20008MR2434651
- Zinov'eva M.R., Mazurov V.D., On finite groups with disconnected prime graph, Proceedings of the Steklov Institute of Mathematics 283 (2013), no. 1, 139–145. Zbl1307.20023MR3476387
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.