Several quantitative characterizations of some specific groups

A. Mohammadzadeh; Ali Reza Moghaddamfar

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 1, page 19-34
  • ISSN: 0010-2628

Abstract

top
Let G be a finite group and let π ( G ) = { p 1 , p 2 , ... , p k } be the set of prime divisors of | G | for which p 1 < p 2 < < p k . The Gruenberg-Kegel graph of G , denoted GK ( G ) , is defined as follows: its vertex set is π ( G ) and two different vertices p i and p j are adjacent by an edge if and only if G contains an element of order p i p j . The degree of a vertex p i in GK ( G ) is denoted by d G ( p i ) and the k -tuple D ( G ) = ( d G ( p 1 ) , d G ( p 2 ) , ... , d G ( p k ) ) is said to be the degree pattern of G . Moreover, if ω π ( G ) is the vertex set of a connected component of GK ( G ) , then the largest ω -number which divides | G | , is said to be an order component of GK ( G ) . We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as U 4 ( 2 ) . Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as U 5 ( 2 ) .

How to cite

top

Mohammadzadeh, A., and Moghaddamfar, Ali Reza. "Several quantitative characterizations of some specific groups." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 19-34. <http://eudml.org/doc/287885>.

@article{Mohammadzadeh2017,
abstract = {Let $G$ be a finite group and let $\pi (G)=\lbrace p_1, p_2,\ldots , p_k\rbrace $ be the set of prime divisors of $|G|$ for which $p_1< p_2< \cdots < p_k$. The Gruenberg-Kegel graph of $G$, denoted $\operatorname\{GK\} (G)$, is defined as follows: its vertex set is $\pi (G)$ and two different vertices $p_i$ and $p_j$ are adjacent by an edge if and only if $G$ contains an element of order $p_i p_j$. The degree of a vertex $p_i$ in $\{\rm GK\}(G)$ is denoted by $d_G(p_i)$ and the $k$-tuple $D(G)= (d_G(p_1), d_G(p_2),\ldots , d_G(p_k))$ is said to be the degree pattern of $G$. Moreover, if $\omega \subseteq \pi (G)$ is the vertex set of a connected component of $\operatorname\{GK\} (G)$, then the largest $\omega $-number which divides $|G|$, is said to be an order component of $\operatorname\{GK\} (G)$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $U_4(2)$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $U_5(2)$.},
author = {Mohammadzadeh, A., Moghaddamfar, Ali Reza},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {OD-characterization of finite group; prime graph; degree pattern; simple group; $2$-Frobenius group},
language = {eng},
number = {1},
pages = {19-34},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Several quantitative characterizations of some specific groups},
url = {http://eudml.org/doc/287885},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Mohammadzadeh, A.
AU - Moghaddamfar, Ali Reza
TI - Several quantitative characterizations of some specific groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 19
EP - 34
AB - Let $G$ be a finite group and let $\pi (G)=\lbrace p_1, p_2,\ldots , p_k\rbrace $ be the set of prime divisors of $|G|$ for which $p_1< p_2< \cdots < p_k$. The Gruenberg-Kegel graph of $G$, denoted $\operatorname{GK} (G)$, is defined as follows: its vertex set is $\pi (G)$ and two different vertices $p_i$ and $p_j$ are adjacent by an edge if and only if $G$ contains an element of order $p_i p_j$. The degree of a vertex $p_i$ in ${\rm GK}(G)$ is denoted by $d_G(p_i)$ and the $k$-tuple $D(G)= (d_G(p_1), d_G(p_2),\ldots , d_G(p_k))$ is said to be the degree pattern of $G$. Moreover, if $\omega \subseteq \pi (G)$ is the vertex set of a connected component of $\operatorname{GK} (G)$, then the largest $\omega $-number which divides $|G|$, is said to be an order component of $\operatorname{GK} (G)$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $U_4(2)$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $U_5(2)$.
LA - eng
KW - OD-characterization of finite group; prime graph; degree pattern; simple group; $2$-Frobenius group
UR - http://eudml.org/doc/287885
ER -

References

top
  1. Akbari B., Moghaddamfar A.R., 10.1142/S0218196712500518, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250051, 22 pages. Zbl1266.20037MR2974105DOI10.1142/S0218196712500518
  2. Akbari B., Moghaddamfar A.R., On recognition by order and degree pattern of finite simple groups, Southeast Asian Bull. Math. 39 (2015), no. 2, 163–172. Zbl1340.20031MR3363927
  3. Akbari B., Moghaddamfar A.R., 10.1007/s11464-014-0430-2, Front. Math. China 10 (2015), no. 1, 1–31. Zbl1321.20024MR3284941DOI10.1007/s11464-014-0430-2
  4. Akbari B., Moghaddamfar A.R., Simple groups which are 2 -fold OD-characterizable, Bull. Malays. Math. Sci. Soc. 35 (2012), no. 1, 65–77. Zbl1241.20020MR2865121
  5. Akbari M., Moghaddamfar A.R., Rahbariyan S., 10.1142/S1005386712000338, Algebra Colloq. 19 (2012), no. 3, 473–482. Zbl1250.20010MR2999256DOI10.1142/S1005386712000338
  6. Alavi S.H, Daneshkhah A., 10.1007/BF02936052, J. Appl. Math. Comput. 17 (2005), no. 1–2, 245–258. Zbl1066.20012MR2108803DOI10.1007/BF02936052
  7. Chen G.Y., A new characterization of sporadic simple groups, Algebra Colloq. 3 (1996), no. 1, 49–58. Zbl1332.20012MR1374160
  8. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985. Zbl0568.20001MR0827219
  9. Hoseini A.A., Moghaddamfar A.R., 10.1007/s11464-010-0011-y, Front. Math. China 5 (2010), no. 3, 541–553. Zbl1205.20029MR2660528DOI10.1007/s11464-010-0011-y
  10. Iranmanesh A., Alavi S.H., Khosravi B., 10.1016/S0022-4049(01)00113-X, J. Pure Appl. Algebra 170 (2002), no. 2–3, 243–254. Zbl1001.20005MR1904845DOI10.1016/S0022-4049(01)00113-X
  11. Iranmanesh A., Khosravi B., A characterization of C 2 ( q ) where q > 5 , Comment. Math. Univ. Carolin. 43 (2002), no. 1, 9–21. Zbl1068.20020MR1903303
  12. Khosravi A., Khosravi B., r -recognizability of B n ( q ) and C n ( q ) where n = 2 m 4 , J. Pure Appl. Algebra 199 (2005), no. 1–3, 149–165. Zbl1076.20008MR2134298
  13. Khosravi B., Some characterizations of L 9 ( 2 ) related to its prime graph, Publ. Math. Debrecen 75 (2009), no. 3–4, 375–385. Zbl1207.20008MR2588212
  14. Khosravi Beh., Khosravi Bah., A characterization of 2 E 6 ( q ) , Kumamoto J. Math. 16 (2003), 1–11. MR1975291
  15. Kogani-Moghaddam R., Moghaddamfar A.R., 10.1007/s11425-011-4314-6, Sci. China Math. 55 (2012), no. 4, 701–720. Zbl1252.20010MR2903455DOI10.1007/s11425-011-4314-6
  16. Kondrat'ev A.S., On prime graph components of finite simple groups, Math. Sb. 180 (1989), no. 6, 787–797. Zbl0691.20013MR1015040
  17. Lucido M.S., Moghaddamfar A.R., 10.1515/jgth.2004.013, J. Group Theory 7 (2004), no. 3, 373–384. Zbl1058.20014MR2063403DOI10.1515/jgth.2004.013
  18. Mazurov V.D., 10.1023/A:1015356614025, Algebra Logic 41 (2002), no. 2, 93–110. Zbl1067.20016MR1922988DOI10.1023/A:1015356614025
  19. Mazurov V.D., Chen G.Y., 10.1007/s10469-008-0005-y, Algebra Logic 47 (2008), no. 1, 49–55. MR2408572DOI10.1007/s10469-008-0005-y
  20. Moghaddamfar A.R., 10.11650/twjm/1500405273, Taiwanese J. Math. 13 (2009), no. 1, 67–89. Zbl1230.20013MR2489308DOI10.11650/twjm/1500405273
  21. Moghaddamfar A.R., Recognizability of finite groups by order and degree pattern, Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 422–433. Zbl1264.20028MR2905667
  22. Moghaddamfar A.R., 10.1142/S0219498817500657, J. Algebra Appl., 16 (2017), no. 2, 1750065, 14 pp. DOI10.1142/S0219498817500657
  23. Moghaddamfar A.R., Darafsheh M.R., 10.1081/AGB-200037717, Comm. Algebra 32 (2004), no. 11, 4507–4513. Zbl1071.20019MR2102462DOI10.1081/AGB-200037717
  24. Moghaddamfar A.R., Rahbarian S., More on the OD-characterizability of a finite group, Algebra Colloq. 18 (2011), 663–674. MR2837003
  25. Moghaddamfar A.R., Rahbariyan S., A quantitative characterization of some finite simple groups through order and degree pattern, Note Mat. 34 (2014), no. 2, 91–105. Zbl1316.20024MR3315986
  26. Moghaddamfar A.R., Rahbarian S., 10.1080/00927872.2014.891605, Comm. Algebra 43 (2015), no. 6, 2308–2334. MR3344192DOI10.1080/00927872.2014.891605
  27. Moghaddamfar A.R., Zokayi A.R., 10.1142/S1005386708000424, Algebra Colloq. 15 (2008), no. 3, 449–456. MR2441479DOI10.1142/S1005386708000424
  28. Moghaddamfar A.R., Zokayi A.R., 10.1007/s11464-009-0037-1, Front. Math. China 4 (2009), 669–680. MR2563648DOI10.1007/s11464-009-0037-1
  29. Moghaddamfar A.R., Zokayi A.R., 10.1142/S1005386710000143, Algebra Colloq. 17 (2010), no. 1, 121–130. Zbl1191.20020MR2589751DOI10.1142/S1005386710000143
  30. Moghaddamfar A.R., Zokayi A.R., Darafsheh M.R., 10.1142/S1005386705000398, Algebra Colloq. 12 (2005), no. 3, 431–442. Zbl1072.20015MR2144997DOI10.1142/S1005386705000398
  31. Shao C., Shi W., Wang L., Zhang L., OD-characterization of 𝔸 16 , Journal of Suzhou University (Natural Science Edition) 24 (2008), 7–10. 
  32. Shao C., Shi W., Wang L., Zhang L., OD-characterization of the simple group L 3 ( 9 ) , Journal of Guangxi University (Natural Science Edition) 34 (2009), 120–122. Zbl1212.20054
  33. Shi W., Zhang L., 10.1007/s11464-008-0026-9, Front. Math. China 3 (2008), 461–474. Zbl1165.20010MR2425165DOI10.1007/s11464-008-0026-9
  34. Suzuki M., Group Theory I, Springer, Berlin-New York, 1982. Zbl0472.20001MR0648772
  35. Vasil'ev A.V., Gorshkov I.B., 10.1007/s11202-009-0027-2, Sib. Math. J. 50 (2009), 233–238. MR2531755DOI10.1007/s11202-009-0027-2
  36. Williams J.S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), no. 2, 487–513. Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
  37. Yan Y., Chen G.Y., OD-characterization of alternating and symmetric groups of degree 106 and 112 , Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 690–696. Zbl1263.20013MR2905690
  38. Yan Y., Chen G.Y., Zhang L.C., Xu H., 10.1007/s11401-013-0787-7, Chin. Ann. Math. Ser. B 34 (2013), no. 5, 777–790. MR3079810DOI10.1007/s11401-013-0787-7
  39. Zavarnitsine A.V., Exceptional action of the simple groups L 4 ( q ) in the defining characteristic, Sib. Elektron. Mat. Izv. 5 (2008), 68–74. Zbl1289.20059MR2586623
  40. Zavarnitsine A.V., Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv. 6 (2009), 1–12. Zbl1289.20021MR2586673
  41. Zhang L., Shi W., 10.1142/S1005386709000273, Algebra Colloq. 16 (2009), 275–282. Zbl1182.20013MR2503250DOI10.1142/S1005386709000273
  42. Zhang L., Shi W., OD-characterization of almost simple groups related to U 6 ( 2 ) , Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 441–450. MR2817102
  43. Zhang L., Shi W., OD-characterization of the projective special linear groups L 2 ( q ) , Algebra Colloq. 19 (2012), no. 3, 509–524. Zbl1257.20012MR2999260
  44. Zinov'eva M.R., Kondrat'ev A.S., An example of a double Frobenius group with order components as in the simple group S 4 ( 3 ) , Vladikavkaz. Mat. Zh. 10 (2008), no. 1, 35–36 (Russian). Zbl1324.20008MR2434651
  45. Zinov'eva M.R., Mazurov V.D., On finite groups with disconnected prime graph, Proceedings of the Steklov Institute of Mathematics 283 (2013), no. 1, 139–145. Zbl1307.20023MR3476387

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.