Some results on the annihilator graph of a commutative ring

Mojgan Afkhami; Kazem Khashyarmanesh; Zohreh Rajabi

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 1, page 151-169
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative ring. The annihilator graph of R , denoted by AG ( R ) , is the undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct vertices x and y are adjacent if and only if ann R ( x y ) ann R ( x ) ann R ( y ) , where for z R , ann R ( z ) = { r R : r z = 0 } . In this paper, we characterize all finite commutative rings R with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings R whose annihilator graphs have clique number 1 , 2 or 3 . Also, we investigate some properties of the annihilator graph under the extension of R to polynomial rings and rings of fractions. For instance, we show that the graphs AG ( R ) and AG ( T ( R ) ) are isomorphic, where T ( R ) is the total quotient ring of R . Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo n , where n 1 .

How to cite

top

Afkhami, Mojgan, Khashyarmanesh, Kazem, and Rajabi, Zohreh. "Some results on the annihilator graph of a commutative ring." Czechoslovak Mathematical Journal 67.1 (2017): 151-169. <http://eudml.org/doc/287889>.

@article{Afkhami2017,
abstract = {Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by $\{\rm AG\}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if $\{\rm ann\}_R(xy) \ne \{\rm ann\}_R(x)\cup \{\rm ann\}_R(y)$, where for $z \in R$, $\{\rm ann\}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs $\{\rm AG\}(R)$ and $\{\rm AG\}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \ge 1$.},
author = {Afkhami, Mojgan, Khashyarmanesh, Kazem, Rajabi, Zohreh},
journal = {Czechoslovak Mathematical Journal},
keywords = {annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions},
language = {eng},
number = {1},
pages = {151-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on the annihilator graph of a commutative ring},
url = {http://eudml.org/doc/287889},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Afkhami, Mojgan
AU - Khashyarmanesh, Kazem
AU - Rajabi, Zohreh
TI - Some results on the annihilator graph of a commutative ring
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 151
EP - 169
AB - Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by ${\rm AG}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm ann}_R(xy) \ne {\rm ann}_R(x)\cup {\rm ann}_R(y)$, where for $z \in R$, ${\rm ann}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs ${\rm AG}(R)$ and ${\rm AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \ge 1$.
LA - eng
KW - annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions
UR - http://eudml.org/doc/287889
ER -

References

top
  1. Afkhami, M., 10.1216/RMJ-2014-44-6-1745, Rocky Mt. J. Math. 44 (2014), 1745-1761. (2014) Zbl1306.05092MR3310946DOI10.1216/RMJ-2014-44-6-1745
  2. Afkhami, M., Barati, Z., Khashyarmanesh, K., 10.1216/RMJ-2014-44-3-705, Rocky Mt. J. Math. 44 (2014), 705-716. (2014) Zbl1301.05075MR3264477DOI10.1216/RMJ-2014-44-3-705
  3. Akbari, S., Maimani, H. R., Yassemi, S., 10.1016/S0021-8693(03)00370-3, J. Algebra 270 (2003), 169-180. (2003) Zbl1032.13014MR2016655DOI10.1016/S0021-8693(03)00370-3
  4. D. F. Anderson, M. C. Axtell, J. A. Stickles, Jr., 10.1007/978-1-4419-6990-3_2, Commutative Algebra. Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. (2011) Zbl1225.13002MR2762487DOI10.1007/978-1-4419-6990-3_2
  5. Anderson, D. F., Badawi, A., 10.1080/00927870802110888, Commun. Algebra 36 (2008), 3073-3092. (2008) Zbl1152.13001MR2440301DOI10.1080/00927870802110888
  6. Anderson, D. F., Badawi, A., 10.1016/j.jalgebra.2008.06.028, J. Algebra 320 (2008), 2706-2719. (2008) Zbl1158.13001MR2441996DOI10.1016/j.jalgebra.2008.06.028
  7. Anderson, D. F., Levy, R., Shapiro, J., 10.1016/S0022-4049(02)00250-5, J. Pure Appl. Algebra 180 (2003), 221-241. (2003) Zbl1076.13001MR1966657DOI10.1016/S0022-4049(02)00250-5
  8. Anderson, D. F., Livingston, P. S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), 434-447. (1999) Zbl0941.05062MR1700509DOI10.1006/jabr.1998.7840
  9. Anderson, D. D., Naseer, M., 10.1006/jabr.1993.1171, J. Algebra 159 (1993), 500-514. (1993) Zbl0798.05067MR1231228DOI10.1006/jabr.1993.1171
  10. Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S., 10.1080/00927870903095574, Commun. Algebra 38 (2010), 2851-2871. (2010) Zbl1219.05150MR2730284DOI10.1080/00927870903095574
  11. Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Series in Mathematics, Addison-Wesley Publishing Company, Reading, London (1969). (1969) Zbl0175.03601MR0242802
  12. Badawi, A., 10.1080/00927872.2012.707262, Commun. Algebra 42 (2014), 108-121. (2014) Zbl1295.13006MR3169557DOI10.1080/00927872.2012.707262
  13. Badawi, A., 10.1080/00927872.2014.897188, Commun. Algebra 43 (2015), 43-50. (2015) Zbl1316.13005MR3240402DOI10.1080/00927872.2014.897188
  14. Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, K., 10.1142/S0219498811005610, J. Algebra Appl. 11 (2012), 1250037, 17 pages. (2012) Zbl1238.13015MR2925450DOI10.1142/S0219498811005610
  15. Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
  16. Belshoff, R., Chapman, J., 10.1016/j.jalgebra.2007.01.049, J. Algebra 316 (2007), 471-480. (2007) Zbl1129.13028MR2354873DOI10.1016/j.jalgebra.2007.01.049
  17. Coté, B., Ewing, C., Huhn, M., Plaut, C. M., Weber, D., 10.1080/00927872.2010.489534, Commun. Algebra 39 (2011), 2849-2861. (2011) Zbl1228.13011MR2834134DOI10.1080/00927872.2010.489534
  18. Gitler, I., Reyes, E., Villarreal, R. H., 10.1016/j.disc.2009.03.020, Discrete Math. 310 (2010), 430-441. (2010) Zbl1198.05089MR2564795DOI10.1016/j.disc.2009.03.020
  19. Kelarev, A., Graph Algebras and Automata, Pure and Applied Mathematics 257, Marcel Dekker, New York (2003). (2003) Zbl1070.68097MR2064147
  20. Kelarev, A., Labelled Cayley graphs and minimal automata, Australas. J. Comb. 30 (2004), 95-101. (2004) Zbl1152.68482MR2080457
  21. Kelarev, A., Ryan, J., Yearwood, J., 10.1016/j.disc.2008.11.030, Discrete Math. 309 (2009), 5360-5369. (2009) Zbl1206.05050MR2548552DOI10.1016/j.disc.2008.11.030
  22. Maimani, H. R., Salimi, M., Sattari, A., Yassemi, S., 10.1016/j.jalgebra.2007.02.003, J. Algebra 319 (2008), 1801-1808. (2008) Zbl1141.13008MR2383067DOI10.1016/j.jalgebra.2007.02.003
  23. West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River (1996). (1996) Zbl0845.05001MR1367739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.