Some results on the annihilator graph of a commutative ring
Mojgan Afkhami; Kazem Khashyarmanesh; Zohreh Rajabi
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 151-169
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAfkhami, Mojgan, Khashyarmanesh, Kazem, and Rajabi, Zohreh. "Some results on the annihilator graph of a commutative ring." Czechoslovak Mathematical Journal 67.1 (2017): 151-169. <http://eudml.org/doc/287889>.
@article{Afkhami2017,
abstract = {Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by $\{\rm AG\}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if $\{\rm ann\}_R(xy) \ne \{\rm ann\}_R(x)\cup \{\rm ann\}_R(y)$, where for $z \in R$, $\{\rm ann\}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs $\{\rm AG\}(R)$ and $\{\rm AG\}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \ge 1$.},
author = {Afkhami, Mojgan, Khashyarmanesh, Kazem, Rajabi, Zohreh},
journal = {Czechoslovak Mathematical Journal},
keywords = {annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions},
language = {eng},
number = {1},
pages = {151-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on the annihilator graph of a commutative ring},
url = {http://eudml.org/doc/287889},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Afkhami, Mojgan
AU - Khashyarmanesh, Kazem
AU - Rajabi, Zohreh
TI - Some results on the annihilator graph of a commutative ring
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 151
EP - 169
AB - Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by ${\rm AG}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm ann}_R(xy) \ne {\rm ann}_R(x)\cup {\rm ann}_R(y)$, where for $z \in R$, ${\rm ann}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs ${\rm AG}(R)$ and ${\rm AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \ge 1$.
LA - eng
KW - annihilator graph; zero-divisor graph; outerplanar; ring-graph; cut-vertex; clique number; weakly perfect; chromatic number; polynomial ring; ring of fractions
UR - http://eudml.org/doc/287889
ER -
References
top- Afkhami, M., 10.1216/RMJ-2014-44-6-1745, Rocky Mt. J. Math. 44 (2014), 1745-1761. (2014) Zbl1306.05092MR3310946DOI10.1216/RMJ-2014-44-6-1745
- Afkhami, M., Barati, Z., Khashyarmanesh, K., 10.1216/RMJ-2014-44-3-705, Rocky Mt. J. Math. 44 (2014), 705-716. (2014) Zbl1301.05075MR3264477DOI10.1216/RMJ-2014-44-3-705
- Akbari, S., Maimani, H. R., Yassemi, S., 10.1016/S0021-8693(03)00370-3, J. Algebra 270 (2003), 169-180. (2003) Zbl1032.13014MR2016655DOI10.1016/S0021-8693(03)00370-3
- D. F. Anderson, M. C. Axtell, J. A. Stickles, Jr., 10.1007/978-1-4419-6990-3_2, Commutative Algebra. Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. (2011) Zbl1225.13002MR2762487DOI10.1007/978-1-4419-6990-3_2
- Anderson, D. F., Badawi, A., 10.1080/00927870802110888, Commun. Algebra 36 (2008), 3073-3092. (2008) Zbl1152.13001MR2440301DOI10.1080/00927870802110888
- Anderson, D. F., Badawi, A., 10.1016/j.jalgebra.2008.06.028, J. Algebra 320 (2008), 2706-2719. (2008) Zbl1158.13001MR2441996DOI10.1016/j.jalgebra.2008.06.028
- Anderson, D. F., Levy, R., Shapiro, J., 10.1016/S0022-4049(02)00250-5, J. Pure Appl. Algebra 180 (2003), 221-241. (2003) Zbl1076.13001MR1966657DOI10.1016/S0022-4049(02)00250-5
- Anderson, D. F., Livingston, P. S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), 434-447. (1999) Zbl0941.05062MR1700509DOI10.1006/jabr.1998.7840
- Anderson, D. D., Naseer, M., 10.1006/jabr.1993.1171, J. Algebra 159 (1993), 500-514. (1993) Zbl0798.05067MR1231228DOI10.1006/jabr.1993.1171
- Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S., 10.1080/00927870903095574, Commun. Algebra 38 (2010), 2851-2871. (2010) Zbl1219.05150MR2730284DOI10.1080/00927870903095574
- Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Series in Mathematics, Addison-Wesley Publishing Company, Reading, London (1969). (1969) Zbl0175.03601MR0242802
- Badawi, A., 10.1080/00927872.2012.707262, Commun. Algebra 42 (2014), 108-121. (2014) Zbl1295.13006MR3169557DOI10.1080/00927872.2012.707262
- Badawi, A., 10.1080/00927872.2014.897188, Commun. Algebra 43 (2015), 43-50. (2015) Zbl1316.13005MR3240402DOI10.1080/00927872.2014.897188
- Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, K., 10.1142/S0219498811005610, J. Algebra Appl. 11 (2012), 1250037, 17 pages. (2012) Zbl1238.13015MR2925450DOI10.1142/S0219498811005610
- Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
- Belshoff, R., Chapman, J., 10.1016/j.jalgebra.2007.01.049, J. Algebra 316 (2007), 471-480. (2007) Zbl1129.13028MR2354873DOI10.1016/j.jalgebra.2007.01.049
- Coté, B., Ewing, C., Huhn, M., Plaut, C. M., Weber, D., 10.1080/00927872.2010.489534, Commun. Algebra 39 (2011), 2849-2861. (2011) Zbl1228.13011MR2834134DOI10.1080/00927872.2010.489534
- Gitler, I., Reyes, E., Villarreal, R. H., 10.1016/j.disc.2009.03.020, Discrete Math. 310 (2010), 430-441. (2010) Zbl1198.05089MR2564795DOI10.1016/j.disc.2009.03.020
- Kelarev, A., Graph Algebras and Automata, Pure and Applied Mathematics 257, Marcel Dekker, New York (2003). (2003) Zbl1070.68097MR2064147
- Kelarev, A., Labelled Cayley graphs and minimal automata, Australas. J. Comb. 30 (2004), 95-101. (2004) Zbl1152.68482MR2080457
- Kelarev, A., Ryan, J., Yearwood, J., 10.1016/j.disc.2008.11.030, Discrete Math. 309 (2009), 5360-5369. (2009) Zbl1206.05050MR2548552DOI10.1016/j.disc.2008.11.030
- Maimani, H. R., Salimi, M., Sattari, A., Yassemi, S., 10.1016/j.jalgebra.2007.02.003, J. Algebra 319 (2008), 1801-1808. (2008) Zbl1141.13008MR2383067DOI10.1016/j.jalgebra.2007.02.003
- West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River (1996). (1996) Zbl0845.05001MR1367739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.