Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains

Mehmet Çelik; Yunus E. Zeytuncu

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 1, page 207-217
  • ISSN: 0011-4642

Abstract

top
On complete pseudoconvex Reinhardt domains in 2 , we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in 2 that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite dimensional and the Hankel operator H z ¯ 1 z ¯ 2 is Hilbert-Schmidt.

How to cite

top

Çelik, Mehmet, and Zeytuncu, Yunus E.. "Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains." Czechoslovak Mathematical Journal 67.1 (2017): 207-217. <http://eudml.org/doc/287892>.

@article{Çelik2017,
abstract = {On complete pseudoconvex Reinhardt domains in $\mathbb \{C\}^2$, we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in $\mathbb \{C\}^2$ that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite dimensional and the Hankel operator $H_\{\bar\{z\}_1 \bar\{z\}_2\}$ is Hilbert-Schmidt.},
author = {Çelik, Mehmet, Zeytuncu, Yunus E.},
journal = {Czechoslovak Mathematical Journal},
keywords = {canonical solution operator for $\overline\{\partial \}$-problem; Hankel operator; Hilbert-Schmidt operator},
language = {eng},
number = {1},
pages = {207-217},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains},
url = {http://eudml.org/doc/287892},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Çelik, Mehmet
AU - Zeytuncu, Yunus E.
TI - Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 207
EP - 217
AB - On complete pseudoconvex Reinhardt domains in $\mathbb {C}^2$, we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in $\mathbb {C}^2$ that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite dimensional and the Hankel operator $H_{\bar{z}_1 \bar{z}_2}$ is Hilbert-Schmidt.
LA - eng
KW - canonical solution operator for $\overline{\partial }$-problem; Hankel operator; Hilbert-Schmidt operator
UR - http://eudml.org/doc/287892
ER -

References

top
  1. Arazy, J., 10.1006/jfan.1996.0042, J. Funct. Anal. 137 (1996), 97-151. (1996) Zbl0880.47015MR1383014DOI10.1006/jfan.1996.0042
  2. Arazy, J., Fisher, S. D., Peetre, J., 10.2307/2374685, Am. J. Math. 110 (1988), 989-1053. (1988) Zbl0669.47017MR0970119DOI10.2307/2374685
  3. Çelik, M., Zeytuncu, Y. E., 10.1007/s00020-013-2070-4, Integral Equations Oper. Theory 76 (2013), 589-599. (2013) Zbl1288.47028MR3073947DOI10.1007/s00020-013-2070-4
  4. Harrington, P., Raich, A., 10.4171/RMI/762, Rev. Mat. Iberoam. 29 (2013), 1405-1420. (2013) Zbl1288.26008MR3148609DOI10.4171/RMI/762
  5. Harrington, P. S., Raich, A., Sobolev spaces and elliptic theory on unbounded domains in n , Adv. Diff. Equ. 19 (2014), 635-692. (2014) Zbl1301.46015MR3252898
  6. Krantz, S. G., Li, S.-Y., Rochberg, R., 10.1007/BF01191818, Integral Equations Oper. Theory 28 (1997), 196-213. (1997) Zbl0903.47019MR1451501DOI10.1007/BF01191818
  7. Le, T., 10.1007/s00020-013-2103-z, Integral Equations Oper. Theory 78 (2014), 515-522. (2014) Zbl1318.47047MR3180876DOI10.1007/s00020-013-2103-z
  8. Li, H., 10.2307/2159984, Proc. Am. Math. Soc. 119 (1993), 1211-1221. (1993) Zbl0802.47022MR1169879DOI10.2307/2159984
  9. Peloso, M. M., 10.1215/ijm/1255986798, Ill. J. Math. 38 (1994), 223-249. (1994) Zbl0812.47023MR1260841DOI10.1215/ijm/1255986798
  10. Retherford, J. R., Hilbert space: Compact operators and the trace theorem, London Mathematical Society Student Texts 27, Cambridge University Press, Cambridge (1993). (1993) Zbl0783.47031MR1237405
  11. Schneider, G., A different proof for the non-existence of Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on the Bergman space, Aust. J. Math. Anal. Appl. (electronic only) 4 (2007), Artical No. 1, pages 7. (2007) Zbl1220.47040MR2326997
  12. Wiegerinck, J. J. O. O., 10.1007/BF01174190, Math. Z. 187 (1984), 559-562. (1984) Zbl0534.32001MR0760055DOI10.1007/BF01174190
  13. Zhu, K. H., 10.2307/2048212, Proc. Am. Math. Soc. 109 (1990), 721-730. (1990) Zbl0731.47028MR1013987DOI10.2307/2048212

NotesEmbed ?

top

You must be logged in to post comments.