Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1097-1112
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHe, Le, and Tang, Yanyan. "Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains." Czechoslovak Mathematical Journal 74.4 (2024): 1097-1112. <http://eudml.org/doc/299639>.
@article{He2024,
abstract = {We consider a class of unbounded nonhyperbolic complete Reinhardt domains \[ D\_\{n,m,k\}^\{\mu ,p,s\}:=\Big \lbrace (z,w\_1,\cdots ,w\_m)\in \mathbb \{C\}^\{n\}\times \mathbb \{C\}^\{k\_1\}\times \cdots \times \mathbb \{C\}^\{k\_m\}\colon \frac\{\Vert w\_1\Vert ^\{2p\_1\}\}\{\{\rm e\}^\{-\mu \_1\Vert z\Vert ^\{s\}\}\}+\cdots +\frac\{\Vert w\_m\Vert ^\{2p\_m\}\}\{\{\rm e\}^\{-\mu \_m\Vert z\Vert ^\{s\}\}\}<1\Big \rbrace , \]
where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_\{n,m,k\}^\{\mu ,p,s\})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.},
author = {He, Le, Tang, Yanyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator},
language = {eng},
number = {4},
pages = {1097-1112},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains},
url = {http://eudml.org/doc/299639},
volume = {74},
year = {2024},
}
TY - JOUR
AU - He, Le
AU - Tang, Yanyan
TI - Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1097
EP - 1112
AB - We consider a class of unbounded nonhyperbolic complete Reinhardt domains \[ D_{n,m,k}^{\mu ,p,s}:=\Big \lbrace (z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac{\Vert w_1\Vert ^{2p_1}}{{\rm e}^{-\mu _1\Vert z\Vert ^{s}}}+\cdots +\frac{\Vert w_m\Vert ^{2p_m}}{{\rm e}^{-\mu _m\Vert z\Vert ^{s}}}<1\Big \rbrace , \]
where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
LA - eng
KW - unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator
UR - http://eudml.org/doc/299639
ER -
References
top- Arazy, J., 10.1006/jfan.1996.0042, J. Funct. Anal. 137 (1996), 97-151. (1996) Zbl0880.47015MR1383014DOI10.1006/jfan.1996.0042
- Arazy, J., Fisher, S. D., Janson, S., Peetre, J., 10.1515/crll.1990.406.179, J. Reine Angew. Math. 406 (1990), 179-199. (1990) Zbl0686.47023MR1048240DOI10.1515/crll.1990.406.179
- Arazy, J., Fisher, S. D., Peetre, J., 10.2307/2374685, Am. J. Math. 110 (1988), 989-1053. (1988) Zbl0669.47017MR0970119DOI10.2307/2374685
- Beberok, T., Göğüş, N. G., 10.48550/arXiv.1604.07059, Available at https://arxiv.org/abs/1604.07059v1 (2016), 9 pages. (2016) DOI10.48550/arXiv.1604.07059
- Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
- Bi, E., Tu, Z., 10.2140/pjm.2018.297.277, Pac. J. Math. 297 (2018), 277-297. (2018) Zbl1410.32001MR3893429DOI10.2140/pjm.2018.297.277
- Çelik, M., Zeytuncu, Y. E., 10.1007/s00020-013-2070-4, Integral Equations Oper. Theory 76 (2013), 589-599. (2013) Zbl1288.47028MR3073947DOI10.1007/s00020-013-2070-4
- Çelik, M., Zeytuncu, Y. E., 10.21136/CMJ.2017.0471-15, Czech. Math. J. 67 (2017), 207-217. (2017) Zbl1482.47050MR3633007DOI10.21136/CMJ.2017.0471-15
- Chen, S.-C., Shaw, M.-C., 10.1090/amsip/019, AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). (2001) Zbl0963.32001MR1800297DOI10.1090/amsip/019
- D'Angelo, J. P., 10.1007/BF02921591, J. Geom. Anal. 4 (1994), 23-34. (1994) Zbl0794.32021MR1274136DOI10.1007/BF02921591
- Haslinger, F., Lamel, B., 10.1016/j.jfa.2008.03.013, J. Funct. Anal. 255 (2008), 13-24. (2008) Zbl1169.32009MR2417807DOI10.1016/j.jfa.2008.03.013
- Huo, Z., 10.1007/s12220-016-9681-3, J. Geom. Anal. 27 (2017), 271-299. (2017) Zbl1367.32004MR3606552DOI10.1007/s12220-016-9681-3
- Kim, H., Ninh, V. T., Yamamori, A., 10.1016/j.jmaa.2013.07.007, J. Math. Anal. Appl. 409 (2014), 637-642. (2014) Zbl1307.32017MR3103183DOI10.1016/j.jmaa.2013.07.007
- Kim, H., Yamamori, A., 10.21136/CMJ.2018.0551-16, Czech. Math. J. 68 (2018), 611-631. (2018) Zbl1499.32042MR3851879DOI10.21136/CMJ.2018.0551-16
- Krantz, S. G., Li, S.-Y., Rochberg, R., 10.1007/BF01191818, Integral Equations Oper. Theory 28 (1997), 196-213. (1997) Zbl0903.47019MR1451501DOI10.1007/BF01191818
- Le, T., 10.1007/s00020-013-2103-z, Integral Equations Oper. Theory 78 (2014), 515-522. (2014) Zbl1318.47047MR3180876DOI10.1007/s00020-013-2103-z
- Li, H., 10.1090/S0002-9939-1993-1169879-9, Proc. Am. Math. Soc. 119 (1993), 1211-1221. (1993) Zbl0802.47022MR1169879DOI10.1090/S0002-9939-1993-1169879-9
- Paris, R. B., 10.1016/S0377-0427(02)00553-8, J. Comput. Appl. Math. 148 (2002), 323-339. (2002) Zbl1013.33002MR1936142DOI10.1016/S0377-0427(02)00553-8
- Peloso, M. M., 10.1215/ijm/1255986798, Ill. J. Math. 38 (1994), 223-249. (1994) Zbl0812.47023MR1260841DOI10.1215/ijm/1255986798
- Retherford, J. R., 10.1017/CBO9781139172592, London Mathematical Society Student Texts 27. Cambridge University Press, Cambridge (1993). (1993) Zbl0783.47031MR1237405DOI10.1017/CBO9781139172592
- Schneider, G., A different proof for the non-existence of Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on the Bergman space, Aust. J. Math. Anal. Appl. 4 (2007), Article ID 1, 7 pages. (2007) Zbl1220.47040MR2326997
- Temme, N. M., 10.4310/MAA.1996.v3.n3.a3, Methods Appl. Anal. 3 (1996), 335-344. (1996) Zbl0863.33002MR1421474DOI10.4310/MAA.1996.v3.n3.a3
- Tu, Z., Wang, L., 10.1016/j.jmaa.2014.04.073, J. Math. Anal. Appl. 419 (2014), 703-714. (2014) Zbl1293.32002MR3225398DOI10.1016/j.jmaa.2014.04.073
- Yamamori, A., 10.1080/17476933.2011.620098, Complex Var. Elliptic Equ. 58 (2013), 783-793. (2013) Zbl1272.32002MR3170660DOI10.1080/17476933.2011.620098
- Zhu, K., 10.1090/S0002-9939-1990-1013987-7, Proc. Am. Math. Soc. 109 (1990), 721-730. (1990) Zbl0731.47028MR1013987DOI10.1090/S0002-9939-1990-1013987-7
- Zhu, K., 10.2307/2374825, Am. J. Math. 113 (1991), 147-167. (1991) Zbl0734.47017MR1087805DOI10.2307/2374825
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.