Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains

Le He; Yanyan Tang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1097-1112
  • ISSN: 0011-4642

Abstract

top
We consider a class of unbounded nonhyperbolic complete Reinhardt domains D n , m , k μ , p , s : = ( z , w 1 , , w m ) n × k 1 × × k m : w 1 2 p 1 e - μ 1 z s + + w m 2 p m e - μ m z s < 1 , where s , p 1 , , p m , μ 1 , , μ m are positive real numbers and n , k 1 , , k m are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space A 2 ( D n , m , k μ , p , s ) , then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.

How to cite

top

He, Le, and Tang, Yanyan. "Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains." Czechoslovak Mathematical Journal 74.4 (2024): 1097-1112. <http://eudml.org/doc/299639>.

@article{He2024,
abstract = {We consider a class of unbounded nonhyperbolic complete Reinhardt domains \[ D\_\{n,m,k\}^\{\mu ,p,s\}:=\Big \lbrace (z,w\_1,\cdots ,w\_m)\in \mathbb \{C\}^\{n\}\times \mathbb \{C\}^\{k\_1\}\times \cdots \times \mathbb \{C\}^\{k\_m\}\colon \frac\{\Vert w\_1\Vert ^\{2p\_1\}\}\{\{\rm e\}^\{-\mu \_1\Vert z\Vert ^\{s\}\}\}+\cdots +\frac\{\Vert w\_m\Vert ^\{2p\_m\}\}\{\{\rm e\}^\{-\mu \_m\Vert z\Vert ^\{s\}\}\}<1\Big \rbrace , \] where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_\{n,m,k\}^\{\mu ,p,s\})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.},
author = {He, Le, Tang, Yanyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator},
language = {eng},
number = {4},
pages = {1097-1112},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains},
url = {http://eudml.org/doc/299639},
volume = {74},
year = {2024},
}

TY - JOUR
AU - He, Le
AU - Tang, Yanyan
TI - Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1097
EP - 1112
AB - We consider a class of unbounded nonhyperbolic complete Reinhardt domains \[ D_{n,m,k}^{\mu ,p,s}:=\Big \lbrace (z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac{\Vert w_1\Vert ^{2p_1}}{{\rm e}^{-\mu _1\Vert z\Vert ^{s}}}+\cdots +\frac{\Vert w_m\Vert ^{2p_m}}{{\rm e}^{-\mu _m\Vert z\Vert ^{s}}}<1\Big \rbrace , \] where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
LA - eng
KW - unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator
UR - http://eudml.org/doc/299639
ER -

References

top
  1. Arazy, J., 10.1006/jfan.1996.0042, J. Funct. Anal. 137 (1996), 97-151. (1996) Zbl0880.47015MR1383014DOI10.1006/jfan.1996.0042
  2. Arazy, J., Fisher, S. D., Janson, S., Peetre, J., 10.1515/crll.1990.406.179, J. Reine Angew. Math. 406 (1990), 179-199. (1990) Zbl0686.47023MR1048240DOI10.1515/crll.1990.406.179
  3. Arazy, J., Fisher, S. D., Peetre, J., 10.2307/2374685, Am. J. Math. 110 (1988), 989-1053. (1988) Zbl0669.47017MR0970119DOI10.2307/2374685
  4. Beberok, T., Göğüş, N. G., 10.48550/arXiv.1604.07059, Available at https://arxiv.org/abs/1604.07059v1 (2016), 9 pages. (2016) DOI10.48550/arXiv.1604.07059
  5. Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
  6. Bi, E., Tu, Z., 10.2140/pjm.2018.297.277, Pac. J. Math. 297 (2018), 277-297. (2018) Zbl1410.32001MR3893429DOI10.2140/pjm.2018.297.277
  7. Çelik, M., Zeytuncu, Y. E., 10.1007/s00020-013-2070-4, Integral Equations Oper. Theory 76 (2013), 589-599. (2013) Zbl1288.47028MR3073947DOI10.1007/s00020-013-2070-4
  8. Çelik, M., Zeytuncu, Y. E., 10.21136/CMJ.2017.0471-15, Czech. Math. J. 67 (2017), 207-217. (2017) Zbl1482.47050MR3633007DOI10.21136/CMJ.2017.0471-15
  9. Chen, S.-C., Shaw, M.-C., 10.1090/amsip/019, AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). (2001) Zbl0963.32001MR1800297DOI10.1090/amsip/019
  10. D'Angelo, J. P., 10.1007/BF02921591, J. Geom. Anal. 4 (1994), 23-34. (1994) Zbl0794.32021MR1274136DOI10.1007/BF02921591
  11. Haslinger, F., Lamel, B., 10.1016/j.jfa.2008.03.013, J. Funct. Anal. 255 (2008), 13-24. (2008) Zbl1169.32009MR2417807DOI10.1016/j.jfa.2008.03.013
  12. Huo, Z., 10.1007/s12220-016-9681-3, J. Geom. Anal. 27 (2017), 271-299. (2017) Zbl1367.32004MR3606552DOI10.1007/s12220-016-9681-3
  13. Kim, H., Ninh, V. T., Yamamori, A., 10.1016/j.jmaa.2013.07.007, J. Math. Anal. Appl. 409 (2014), 637-642. (2014) Zbl1307.32017MR3103183DOI10.1016/j.jmaa.2013.07.007
  14. Kim, H., Yamamori, A., 10.21136/CMJ.2018.0551-16, Czech. Math. J. 68 (2018), 611-631. (2018) Zbl1499.32042MR3851879DOI10.21136/CMJ.2018.0551-16
  15. Krantz, S. G., Li, S.-Y., Rochberg, R., 10.1007/BF01191818, Integral Equations Oper. Theory 28 (1997), 196-213. (1997) Zbl0903.47019MR1451501DOI10.1007/BF01191818
  16. Le, T., 10.1007/s00020-013-2103-z, Integral Equations Oper. Theory 78 (2014), 515-522. (2014) Zbl1318.47047MR3180876DOI10.1007/s00020-013-2103-z
  17. Li, H., 10.1090/S0002-9939-1993-1169879-9, Proc. Am. Math. Soc. 119 (1993), 1211-1221. (1993) Zbl0802.47022MR1169879DOI10.1090/S0002-9939-1993-1169879-9
  18. Paris, R. B., 10.1016/S0377-0427(02)00553-8, J. Comput. Appl. Math. 148 (2002), 323-339. (2002) Zbl1013.33002MR1936142DOI10.1016/S0377-0427(02)00553-8
  19. Peloso, M. M., 10.1215/ijm/1255986798, Ill. J. Math. 38 (1994), 223-249. (1994) Zbl0812.47023MR1260841DOI10.1215/ijm/1255986798
  20. Retherford, J. R., 10.1017/CBO9781139172592, London Mathematical Society Student Texts 27. Cambridge University Press, Cambridge (1993). (1993) Zbl0783.47031MR1237405DOI10.1017/CBO9781139172592
  21. Schneider, G., A different proof for the non-existence of Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on the Bergman space, Aust. J. Math. Anal. Appl. 4 (2007), Article ID 1, 7 pages. (2007) Zbl1220.47040MR2326997
  22. Temme, N. M., 10.4310/MAA.1996.v3.n3.a3, Methods Appl. Anal. 3 (1996), 335-344. (1996) Zbl0863.33002MR1421474DOI10.4310/MAA.1996.v3.n3.a3
  23. Tu, Z., Wang, L., 10.1016/j.jmaa.2014.04.073, J. Math. Anal. Appl. 419 (2014), 703-714. (2014) Zbl1293.32002MR3225398DOI10.1016/j.jmaa.2014.04.073
  24. Yamamori, A., 10.1080/17476933.2011.620098, Complex Var. Elliptic Equ. 58 (2013), 783-793. (2013) Zbl1272.32002MR3170660DOI10.1080/17476933.2011.620098
  25. Zhu, K., 10.1090/S0002-9939-1990-1013987-7, Proc. Am. Math. Soc. 109 (1990), 721-730. (1990) Zbl0731.47028MR1013987DOI10.1090/S0002-9939-1990-1013987-7
  26. Zhu, K., 10.2307/2374825, Am. J. Math. 113 (1991), 147-167. (1991) Zbl0734.47017MR1087805DOI10.2307/2374825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.