On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions

Gopal Ghosh; Uday Chand De

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 2, page 87-99
  • ISSN: 0231-9721

Abstract

top
We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field ξ belonging to the ( k , μ ) ' -nullity distribution and ( k , μ ) -nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with ξ belonging to ( k , μ ) ' - and ( k , μ ) -nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with ξ belonging to ( k , μ ) ' -nullity distribution admitting a semisymmetric metric connection.

How to cite

top

Ghosh, Gopal, and De, Uday Chand. "On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 87-99. <http://eudml.org/doc/287900>.

@article{Ghosh2016,
abstract = {We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field $\xi $ belonging to the $(k,\mu )^\{\prime \}$-nullity distribution and $(k,\mu )$-nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^\{\prime \}$- and $(k,\mu )$-nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^\{\prime \}$-nullity distribution admitting a semisymmetric metric connection.},
author = {Ghosh, Gopal, De, Uday Chand},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Semisymmetric metric connection; almost Kenmotsu manifold; Einstein manifold; sectional curvature; Ricci tensor; Weyl conformal curvature tensor},
language = {eng},
number = {2},
pages = {87-99},
publisher = {Palacký University Olomouc},
title = {On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions},
url = {http://eudml.org/doc/287900},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Ghosh, Gopal
AU - De, Uday Chand
TI - On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 87
EP - 99
AB - We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field $\xi $ belonging to the $(k,\mu )^{\prime }$-nullity distribution and $(k,\mu )$-nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$- and $(k,\mu )$-nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$-nullity distribution admitting a semisymmetric metric connection.
LA - eng
KW - Semisymmetric metric connection; almost Kenmotsu manifold; Einstein manifold; sectional curvature; Ricci tensor; Weyl conformal curvature tensor
UR - http://eudml.org/doc/287900
ER -

References

top
  1. Blair, D. E., Koufogiorgos, T., Papantoniou, B. J., 10.1007/BF02761646, . Israel. J. Math. 91 (1995), 189–214. (1995) MR1348312DOI10.1007/BF02761646
  2. Blair, D. E., Contact Manifolds in Reimannian Geometry, . Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1976. (1976) 
  3. Blair, D. E., Reimannian Geometry of Contact and Sympletic Manifolds, . Progress in Mathematics 203, Birkhäuser, Basel, 2010. (2010) MR2682326
  4. Binh, T. Q., 10.1007/BF01946849, . Periodica Mathematica Hungarica 21 (1990), 101–107. (1990) MR1070949DOI10.1007/BF01946849
  5. Barman, A., Concirculer curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold, . Thai Jornal Of Mathematics 13 (2015), 245–257. (2015) MR3346960
  6. Barman, A., On a special type of Remannian manifold admitting a type of semisymmetric metric connection, . Novi Sad J. Math 42 (2012), 81–88. (2012) MR3099738
  7. Barman, A., 10.2298/PIM1409239B, . Publication de L’Insitut Mathematique 109 (2014), 239–247. (2014) MR3221231DOI10.2298/PIM1409239B
  8. De, U. C., Pathok, G., On a Semi-symmetric Metric Connection in a Kenmotsu manifold, . Bull. Cal. Math. Soc. 94 (2002), 319–324. (2002) MR1947587
  9. Dileo, G., Pastore, A. M., 10.1007/s00022-009-1974-2, . J. Geom. 93 (2009), 46–61. (2009) Zbl1204.53025MR2501208DOI10.1007/s00022-009-1974-2
  10. Dileo, G., Pastore, A. M., 10.1016/j.difgeo.2009.03.007, . Differential Geom. Appl. 27 (2009), 671–679. (2009) MR2567845DOI10.1016/j.difgeo.2009.03.007
  11. Dileo, G., Pastore, A. M., Almost Kenmotsu manifolds and local symmetri, . Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343–354. (2007) MR2341570
  12. Friedman, A., Schouten, J. A., 10.1007/BF01187468, . Math., Zeitschr. 21 (1924), 211–223. (1924) MR1544701DOI10.1007/BF01187468
  13. Gray, A., 10.1090/S0002-9939-1966-0198392-4, . Proc. Amer. Math. Soc. 17 (1966), 897–902. (1966) Zbl0145.18603MR0198392DOI10.1090/S0002-9939-1966-0198392-4
  14. Hayden, H. A., 10.1112/plms/s2-34.1.27, . Proc. London Math. Soc. 34 (1932), 27–50. (1932) MR1576150DOI10.1112/plms/s2-34.1.27
  15. Imai, T., Notes on semi-symmetric metric conection, . Tensor (N.S.) 24 (1972), 293–296. (1972) MR0375121
  16. Kenmotsu, K., 10.2748/tmj/1178241594, . Tohoku Mathematical Journal 24, 1 (1972), 93–103. (1972) Zbl0245.53040MR0319102DOI10.2748/tmj/1178241594
  17. Liang, Y., On semi-symmetric recurrent-metric connection, . Tensor (N.S.) 55 (1994), 107–112. (1994) Zbl0817.53024MR1310103
  18. Mishra, R. S., Structures on Differentiable Manifold and Their Applications, . Chandrama Prakasana, Allahabad, 1984. (1984) 
  19. Pastore, A. M., Saltarelli, V., Generalized nullity distribution on an almost Kenmotsu manifolds, . J. Geom. 4 (2011), 168–183. (2011) MR2929587
  20. Pastore, A. M., Saltarelli, V., Almost Kenmotsu manifolds with conformal Reeb foliation, . Bull. Belg. Math. Soc. Simon Stevin 21 (2012), 343–354. (2012) MR2907610
  21. Pravanović, M., Pušić, N., On manifolds admitting some semi-symmetric metric connection, . Indian J. Math. 37 (1995), 37–67. (1995) MR1366983
  22. Pušić, N., On geodesic lines of metric semi-symmetric connection on Riemannian and hyperbolic Kählerian spaces, . Novi Sad J. Math. 29 (1999), 291–299. (1999) MR1771006
  23. Szabó, Z. I., 10.4310/jdg/1214437486, . J. Differential Geom. 17, 4 (1982), 531–582. (1982) Zbl0508.53025MR0683165DOI10.4310/jdg/1214437486
  24. Tanno, S., 10.2969/jmsj/03030509, . J. Math. Soc. Japan 30 (1978), 509–531. (1978) MR0500721DOI10.2969/jmsj/03030509
  25. Velimirović, L. S., Minčić, S. M., Stanković, M. S., Infinitesimal deformations of curvature tensor at non-symmetric affine connection space, . Mat. Vesnic 54 (2002), 219–226. (2002) MR1996621
  26. Velimirović, L. S., Minčić, S. M., Stanković, M. S., Infinitesimal deformations and Lie derivative of non-symmetric affine connection space, . Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 111–121. (2003) MR2056026
  27. Wang, Y., Liu, X., On φ -recurrent almost kenmotsu manifolds, . Kuwait J. Sci. 42 (2015), 65–77. (2015) Zbl1358.53040MR3331380
  28. Wang, Y., Liu, X., 10.2298/FIL1404839W, . Filomat 28 (2014), 839–847. (2014) MR3360077DOI10.2298/FIL1404839W
  29. Wang, Y., Liu, X., 10.4064/ap112-1-3, . Ann. Polon. Math. 112 (2014), 37–46. (2014) MR3244913DOI10.4064/ap112-1-3
  30. Yano, K., On semisymmetric metric connection, . Rev. Roumaine Math. Pures Appl. 15 (1970), 1570–1586. (1970) MR0275321
  31. Yano, K., Kon, M., Structure on Manifolds, . Series in Math. 3, World Scientific, Singapore, 1984. (1984) MR0794310
  32. Zhao, P., Song, H., An invariant of the projective semisymmetric connection, . Chinese Quaterly J. Math. 19 (1994), 48–52. (1994) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.