Infinitesimal deformations and Lie derivative of a non-symmetric affine connection space

Ljubica S. Velimirović; Svetislav M. Minčić; Mića S. Stanković

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2003)

  • Volume: 42, Issue: 1, page 111-121
  • ISSN: 0231-9721

How to cite

top

Velimirović, Ljubica S., Minčić, Svetislav M., and Stanković, Mića S.. "Infinitesimal deformations and Lie derivative of a non-symmetric affine connection space." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 42.1 (2003): 111-121. <http://eudml.org/doc/23747>.

@article{Velimirović2003,
author = {Velimirović, Ljubica S., Minčić, Svetislav M., Stanković, Mića S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {infinitesimal deformation; non-symmetric affine connection; Lie derivative; tensor fields},
language = {eng},
number = {1},
pages = {111-121},
publisher = {Palacký University Olomouc},
title = {Infinitesimal deformations and Lie derivative of a non-symmetric affine connection space},
url = {http://eudml.org/doc/23747},
volume = {42},
year = {2003},
}

TY - JOUR
AU - Velimirović, Ljubica S.
AU - Minčić, Svetislav M.
AU - Stanković, Mića S.
TI - Infinitesimal deformations and Lie derivative of a non-symmetric affine connection space
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2003
PB - Palacký University Olomouc
VL - 42
IS - 1
SP - 111
EP - 121
LA - eng
KW - infinitesimal deformation; non-symmetric affine connection; Lie derivative; tensor fields
UR - http://eudml.org/doc/23747
ER -

References

top
  1. Minčić S. M., Ricci identities in the spаce of non-symmetric аffine connexion, Matematički vesnik 10(25), 2 (1973), 161-172. (1973) MR0341310
  2. Minčić S. M., New commutаtion formulаs in the non-symetric аffine connexion spаce, Publ. Inst. Math. (Beograd) (N.S) 22,(36) (1977), 189-199. (1977) MR0482552
  3. Minčić S. M., Independent curvаture tensors аnd pseudotensors of spаces with non-symmetric аffine connexion, Coll. math. soc. János Bolyai, 31. Dif. geom., Budapest (Hungary), 1979, 445-460. (1979) 
  4. Stojanović R., Osnovi diferencijalne geometrije, Grаdjevinskа knjigа, Beogrаd, 1963. (1963) 
  5. Schouten J. A., Ricci Calculus, Springer Verlаg, Berlin-Götingen-Heidelberg, 1954 Zbl0057.37803MR0516659
  6. Yano K., Sur lа theorie des deformаtions infinitesimаles, Journal of Fac. of Sci. Univ. of Tokyo 6 (1949), 1-75. (1949) MR0035084
  7. Yano K., The Theory of Lie Derivatives and its Applications, N-Hollаnd Publ. Co., Amsterdаm, 1957. (1957) Zbl0077.15802MR0088769
  8. Ivanova-Karatopraklieva I., Sabitov I. Kh., Surfаce deformаtion, J. Math. Sci., New York 70, 2 (1994), 1685-1716. (1994) 
  9. Ivanova-Karatopraklieva I., Sabitov I. Kh., Bending of surfаces II, J. Math. Sci., New York 74, 3 (1995), 997-1043. (1995) MR1330961
  10. Minčić S. M., Velimirović L. S., Stanković M. S., Infinitesimаl Deformаtions of а Non-symmetric Affine Connection Spаce, Filomat 15 (2001). 
  11. Mikes J., Holomorphicаlly projective mаppings аnd their generаlizаtions, J. Math. Sci., New York 89, 3 (1998), 1334-1353. (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.