A curvature identity on a 6-dimensional Riemannian manifold and its applications
Yunhee Euh; Jeong Hyeong Park; Kouei Sekigawa
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 253-270
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEuh, Yunhee, Park, Jeong Hyeong, and Sekigawa, Kouei. "A curvature identity on a 6-dimensional Riemannian manifold and its applications." Czechoslovak Mathematical Journal 67.1 (2017): 253-270. <http://eudml.org/doc/287904>.
@article{Euh2017,
abstract = {We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.},
author = {Euh, Yunhee, Park, Jeong Hyeong, Sekigawa, Kouei},
journal = {Czechoslovak Mathematical Journal},
keywords = {Chern-Gauss-Bonnet theorem; curvature identity; locally harmonic manifold; Einstein manifold; Singer-Thorpe basis; Hitchin inequality},
language = {eng},
number = {1},
pages = {253-270},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A curvature identity on a 6-dimensional Riemannian manifold and its applications},
url = {http://eudml.org/doc/287904},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Euh, Yunhee
AU - Park, Jeong Hyeong
AU - Sekigawa, Kouei
TI - A curvature identity on a 6-dimensional Riemannian manifold and its applications
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 253
EP - 270
AB - We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.
LA - eng
KW - Chern-Gauss-Bonnet theorem; curvature identity; locally harmonic manifold; Einstein manifold; Singer-Thorpe basis; Hitchin inequality
UR - http://eudml.org/doc/287904
ER -
References
top- Arias-Marco, T., Kowalski, O., 10.1007/s10587-015-0159-4, Czech. Math. J. 65 (2015), 21-59. (2015) Zbl06433720MR3336024DOI10.1007/s10587-015-0159-4
- Berger, M., 10.24033/asens.1194, Ann. Sci. Éc. Norm. Supér French 3 (1970), 285-294. (1970) Zbl0204.54802MR0278238DOI10.24033/asens.1194
- Berndt, J., Tricerri, F., Vanhecke, L., 10.1007/BFb0076902, Lecture Notes in Mathematics 1598, Springer, Berlin (1995). (1995) Zbl0818.53067MR1340192DOI10.1007/BFb0076902
- Besse, A. L., 10.1007/978-3-642-61876-5_3, Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer, Berlin (1978). (1978) Zbl0387.53010MR496885DOI10.1007/978-3-642-61876-5_3
- Boeckx, E., Vanhecke, L., 10.1023/A:1013779805244, Czech. Math. J. 51 (2001), 523-544. (2001) Zbl1079.53063MR1851545DOI10.1023/A:1013779805244
- Carpenter, P., Gray, A., Willmore, T. J., 10.1093/qmath/33.1.45, Q. J. Math., Oxf. II. 33 (1982), 45-64. (1982) Zbl0509.53045MR0689850DOI10.1093/qmath/33.1.45
- Chun, S. H., Park, J. H., Sekigawa, K., 10.1093/qmath/hap025, Q. J. Math. 62 (2011), 59-69. (2011) Zbl1222.53047MR2774353DOI10.1093/qmath/hap025
- Copson, E. T., Ruse, H. S., 10.1017/s0370164600020095, Proc. R. Soc. Edinb. 60 (1940), 117-133. (1940) Zbl0027.26001MR0002249DOI10.1017/s0370164600020095
- Damek, E., Ricci, F., 10.1090/S0273-0979-1992-00293-8, Bull. Am. Math. Soc., New. Ser. 27 (1992), 139-142 9999DOI99999 10.1090/S0273-0979-1992-00293-8 . (1992) Zbl0755.53032MR1142682DOI10.1090/S0273-0979-1992-00293-8
- Euh, Y., Gilkey, P., Park, J. H., Sekigawa, K., 10.1016/j.difgeo.2013.03.006, Differ. Geom. Appl. 31 (2013), 374-387. (2013) Zbl1282.53024MR3049632DOI10.1016/j.difgeo.2013.03.006
- Euh, Y., Park, J. H., Sekigawa, K., 10.1007/s00025-011-0164-3, Result. Math. 63 (2013), 107-114. (2013) Zbl1273.53009MR3009674DOI10.1007/s00025-011-0164-3
- Euh, Y., Park, J. H., Sekigawa, K., 10.2478/s12175-013-0121-6, Math. Slovaca 63 (2013), 595-610. (2013) Zbl06201661MR3071978DOI10.2478/s12175-013-0121-6
- Gilkey, P., Park, J. H., Sekigawa, K., 10.1016/j.difgeo.2011.08.005, Differ. Geom. Appl. 29 (2011), 770-778. (2011) Zbl1259.53013MR2846274DOI10.1016/j.difgeo.2011.08.005
- Gilkey, P., Park, J. H., Sekigawa, K., 10.1016/j.geomphys.2012.01.002, J. Geom. Phys. 62 (2012), 814-825. (2012) Zbl1246.53022MR2888984DOI10.1016/j.geomphys.2012.01.002
- Gilkey, P., Park, J. H., Sekigawa, K., 10.1142/S0219887813500254, Int. J. Geom. Methods Mod. Phys. 10 Article ID 1350025, 21 pages (2013). (2013) Zbl06200755MR3056523DOI10.1142/S0219887813500254
- Gilkey, P., Park, J. H., Sekigawa, K., 10.2969/jmsj/06820459, J. Math. Soc. Japan 68 (2016), 459-487. (2016) Zbl06597343MR3488133DOI10.2969/jmsj/06820459
- Gray, A., Willmore, T. J., 10.1017/S0308210500032571, Proc. R. Soc. Edinb., Sect. A 92 (1982), 343-364. (1982) Zbl0495.53040MR0677493DOI10.1017/S0308210500032571
- Kreyssig, P., An introduction to harmonic manifolds and the Lichnerowicz conjecture, Available at arXiv:1007.0477v1.
- Ledger, A. J., Harmonic Spaces, Ph.D. Thesis, University of Durham, Durham (1954). (1954)
- Ledger, A. J., 10.1112/jlms/s1-32.1.53, J. London Math. Soc. 32 (1957), 53-56. (1957) Zbl0084.37406MR0083796DOI10.1112/jlms/s1-32.1.53
- Lichnerowicz, A., 10.24033/bsmf.1359, Bull. Soc. Math. Fr. French 72 (1944), 146-168. (1944) Zbl0060.38506MR0012886DOI10.24033/bsmf.1359
- Lichnerowicz, A., Géométrie des groupes de transformations, Travaux et recherches mathématiques 3, Dunod, Paris French (1958). (1958) Zbl0096.16001MR0124009
- Nikolayevsky, Y., 10.4171/CMH/2, Comment. Math. Helv. 80 (2005), 29-50. (2005) Zbl1078.53032MR2130564DOI10.4171/CMH/2
- Patterson, E. M., 10.1112/jlms/s2-23.2.349, J. Lond. Math. Soc., II. Ser. 23 (1981), 349-358. (1981) Zbl0417.53025MR0609115DOI10.1112/jlms/s2-23.2.349
- Sakai, T., 10.2748/tmj/1178242547, Tohoku Math. J., II. Ser. 23 (1971), 589-603. (1971) Zbl0237.53040MR0303465DOI10.2748/tmj/1178242547
- Sekigawa, K., On 4-dimensional connected Einstein spaces satisfying the condition , Sci. Rep. Niigata Univ., Ser. A 7 (1969), 29-31. (1969) Zbl0345.53035MR0261490
- Sekigawa, K., Vanhecke, L., 10.1007/BFb0076638, Proc. Symp. Differential geometry, Peñiscola 1985, Lect. Notes Math. 1209, Springer, Berlin 275-291 (1986). (1986) Zbl0605.53031MR0863763DOI10.1007/BFb0076638
- Szabó, Z. I., 10.4310/jdg/1214444087, J. Differ. Geom. 31 (1990), 1-28. (1990) Zbl0686.53042MR1030663DOI10.4310/jdg/1214444087
- Tachibana, S., 10.4064/cm-26-1-149-155, Colloq. Math. 26 (1972), 149-155. (1972) Zbl0223.53044MR0336678DOI10.4064/cm-26-1-149-155
- Walker, A. G., 10.1112/jlms/s1-24.1.21, J. Lond. Math. Soc. 24 (1949), 21-28. (1949) Zbl0032.18801MR0030280DOI10.1112/jlms/s1-24.1.21
- Watanabe, Y., 10.2748/tmj/1178241030, Tohoku Math. J., II. Ser. 27 (1975), 13-24. (1975) Zbl0311.53068MR0365439DOI10.2748/tmj/1178241030
- Watanabe, Y., 10.2996/kmj/1138847322, Kōdai Math. Semin. Rep. 27 (1976), 410-420. (1976) Zbl0336.53019MR0418004DOI10.2996/kmj/1138847322
- Watanabe, Y., 10.2996/kmj/1138036667, Kodai Math. J. 6 (1983), 106-109 9999DOI99999 10.2996/kmj/1138036667 . (1983) Zbl0519.53013MR0698331DOI10.2996/kmj/1138036667
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.