A curvature identity on a 6-dimensional Riemannian manifold and its applications

Yunhee Euh; Jeong Hyeong Park; Kouei Sekigawa

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 1, page 253-270
  • ISSN: 0011-4642

Abstract

top
We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.

How to cite

top

Euh, Yunhee, Park, Jeong Hyeong, and Sekigawa, Kouei. "A curvature identity on a 6-dimensional Riemannian manifold and its applications." Czechoslovak Mathematical Journal 67.1 (2017): 253-270. <http://eudml.org/doc/287904>.

@article{Euh2017,
abstract = {We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.},
author = {Euh, Yunhee, Park, Jeong Hyeong, Sekigawa, Kouei},
journal = {Czechoslovak Mathematical Journal},
keywords = {Chern-Gauss-Bonnet theorem; curvature identity; locally harmonic manifold; Einstein manifold; Singer-Thorpe basis; Hitchin inequality},
language = {eng},
number = {1},
pages = {253-270},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A curvature identity on a 6-dimensional Riemannian manifold and its applications},
url = {http://eudml.org/doc/287904},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Euh, Yunhee
AU - Park, Jeong Hyeong
AU - Sekigawa, Kouei
TI - A curvature identity on a 6-dimensional Riemannian manifold and its applications
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 253
EP - 270
AB - We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.
LA - eng
KW - Chern-Gauss-Bonnet theorem; curvature identity; locally harmonic manifold; Einstein manifold; Singer-Thorpe basis; Hitchin inequality
UR - http://eudml.org/doc/287904
ER -

References

top
  1. Arias-Marco, T., Kowalski, O., 10.1007/s10587-015-0159-4, Czech. Math. J. 65 (2015), 21-59. (2015) Zbl06433720MR3336024DOI10.1007/s10587-015-0159-4
  2. Berger, M., 10.24033/asens.1194, Ann. Sci. Éc. Norm. Supér French 3 (1970), 285-294. (1970) Zbl0204.54802MR0278238DOI10.24033/asens.1194
  3. Berndt, J., Tricerri, F., Vanhecke, L., 10.1007/BFb0076902, Lecture Notes in Mathematics 1598, Springer, Berlin (1995). (1995) Zbl0818.53067MR1340192DOI10.1007/BFb0076902
  4. Besse, A. L., 10.1007/978-3-642-61876-5_3, Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer, Berlin (1978). (1978) Zbl0387.53010MR496885DOI10.1007/978-3-642-61876-5_3
  5. Boeckx, E., Vanhecke, L., 10.1023/A:1013779805244, Czech. Math. J. 51 (2001), 523-544. (2001) Zbl1079.53063MR1851545DOI10.1023/A:1013779805244
  6. Carpenter, P., Gray, A., Willmore, T. J., 10.1093/qmath/33.1.45, Q. J. Math., Oxf. II. 33 (1982), 45-64. (1982) Zbl0509.53045MR0689850DOI10.1093/qmath/33.1.45
  7. Chun, S. H., Park, J. H., Sekigawa, K., 10.1093/qmath/hap025, Q. J. Math. 62 (2011), 59-69. (2011) Zbl1222.53047MR2774353DOI10.1093/qmath/hap025
  8. Copson, E. T., Ruse, H. S., 10.1017/s0370164600020095, Proc. R. Soc. Edinb. 60 (1940), 117-133. (1940) Zbl0027.26001MR0002249DOI10.1017/s0370164600020095
  9. Damek, E., Ricci, F., 10.1090/S0273-0979-1992-00293-8, Bull. Am. Math. Soc., New. Ser. 27 (1992), 139-142 9999DOI99999 10.1090/S0273-0979-1992-00293-8 . (1992) Zbl0755.53032MR1142682DOI10.1090/S0273-0979-1992-00293-8
  10. Euh, Y., Gilkey, P., Park, J. H., Sekigawa, K., 10.1016/j.difgeo.2013.03.006, Differ. Geom. Appl. 31 (2013), 374-387. (2013) Zbl1282.53024MR3049632DOI10.1016/j.difgeo.2013.03.006
  11. Euh, Y., Park, J. H., Sekigawa, K., 10.1007/s00025-011-0164-3, Result. Math. 63 (2013), 107-114. (2013) Zbl1273.53009MR3009674DOI10.1007/s00025-011-0164-3
  12. Euh, Y., Park, J. H., Sekigawa, K., 10.2478/s12175-013-0121-6, Math. Slovaca 63 (2013), 595-610. (2013) Zbl06201661MR3071978DOI10.2478/s12175-013-0121-6
  13. Gilkey, P., Park, J. H., Sekigawa, K., 10.1016/j.difgeo.2011.08.005, Differ. Geom. Appl. 29 (2011), 770-778. (2011) Zbl1259.53013MR2846274DOI10.1016/j.difgeo.2011.08.005
  14. Gilkey, P., Park, J. H., Sekigawa, K., 10.1016/j.geomphys.2012.01.002, J. Geom. Phys. 62 (2012), 814-825. (2012) Zbl1246.53022MR2888984DOI10.1016/j.geomphys.2012.01.002
  15. Gilkey, P., Park, J. H., Sekigawa, K., 10.1142/S0219887813500254, Int. J. Geom. Methods Mod. Phys. 10 Article ID 1350025, 21 pages (2013). (2013) Zbl06200755MR3056523DOI10.1142/S0219887813500254
  16. Gilkey, P., Park, J. H., Sekigawa, K., 10.2969/jmsj/06820459, J. Math. Soc. Japan 68 (2016), 459-487. (2016) Zbl06597343MR3488133DOI10.2969/jmsj/06820459
  17. Gray, A., Willmore, T. J., 10.1017/S0308210500032571, Proc. R. Soc. Edinb., Sect. A 92 (1982), 343-364. (1982) Zbl0495.53040MR0677493DOI10.1017/S0308210500032571
  18. Kreyssig, P., An introduction to harmonic manifolds and the Lichnerowicz conjecture, Available at arXiv:1007.0477v1. 
  19. Ledger, A. J., Harmonic Spaces, Ph.D. Thesis, University of Durham, Durham (1954). (1954) 
  20. Ledger, A. J., 10.1112/jlms/s1-32.1.53, J. London Math. Soc. 32 (1957), 53-56. (1957) Zbl0084.37406MR0083796DOI10.1112/jlms/s1-32.1.53
  21. Lichnerowicz, A., 10.24033/bsmf.1359, Bull. Soc. Math. Fr. French 72 (1944), 146-168. (1944) Zbl0060.38506MR0012886DOI10.24033/bsmf.1359
  22. Lichnerowicz, A., Géométrie des groupes de transformations, Travaux et recherches mathématiques 3, Dunod, Paris French (1958). (1958) Zbl0096.16001MR0124009
  23. Nikolayevsky, Y., 10.4171/CMH/2, Comment. Math. Helv. 80 (2005), 29-50. (2005) Zbl1078.53032MR2130564DOI10.4171/CMH/2
  24. Patterson, E. M., 10.1112/jlms/s2-23.2.349, J. Lond. Math. Soc., II. Ser. 23 (1981), 349-358. (1981) Zbl0417.53025MR0609115DOI10.1112/jlms/s2-23.2.349
  25. Sakai, T., 10.2748/tmj/1178242547, Tohoku Math. J., II. Ser. 23 (1971), 589-603. (1971) Zbl0237.53040MR0303465DOI10.2748/tmj/1178242547
  26. Sekigawa, K., On 4-dimensional connected Einstein spaces satisfying the condition R ( X , Y ) · R = 0 , Sci. Rep. Niigata Univ., Ser. A 7 (1969), 29-31. (1969) Zbl0345.53035MR0261490
  27. Sekigawa, K., Vanhecke, L., 10.1007/BFb0076638, Proc. Symp. Differential geometry, Peñiscola 1985, Lect. Notes Math. 1209, Springer, Berlin 275-291 (1986). (1986) Zbl0605.53031MR0863763DOI10.1007/BFb0076638
  28. Szabó, Z. I., 10.4310/jdg/1214444087, J. Differ. Geom. 31 (1990), 1-28. (1990) Zbl0686.53042MR1030663DOI10.4310/jdg/1214444087
  29. Tachibana, S., 10.4064/cm-26-1-149-155, Colloq. Math. 26 (1972), 149-155. (1972) Zbl0223.53044MR0336678DOI10.4064/cm-26-1-149-155
  30. Walker, A. G., 10.1112/jlms/s1-24.1.21, J. Lond. Math. Soc. 24 (1949), 21-28. (1949) Zbl0032.18801MR0030280DOI10.1112/jlms/s1-24.1.21
  31. Watanabe, Y., 10.2748/tmj/1178241030, Tohoku Math. J., II. Ser. 27 (1975), 13-24. (1975) Zbl0311.53068MR0365439DOI10.2748/tmj/1178241030
  32. Watanabe, Y., 10.2996/kmj/1138847322, Kōdai Math. Semin. Rep. 27 (1976), 410-420. (1976) Zbl0336.53019MR0418004DOI10.2996/kmj/1138847322
  33. Watanabe, Y., 10.2996/kmj/1138036667, Kodai Math. J. 6 (1983), 106-109 9999DOI99999 10.2996/kmj/1138036667 . (1983) Zbl0519.53013MR0698331DOI10.2996/kmj/1138036667

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.