Unit tangent sphere bundles with constant scalar curvature

Eric Boeckx; Lieven Vanhecke

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 3, page 523-544
  • ISSN: 0011-4642

Abstract

top
As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.

How to cite

top

Boeckx, Eric, and Vanhecke, Lieven. "Unit tangent sphere bundles with constant scalar curvature." Czechoslovak Mathematical Journal 51.3 (2001): 523-544. <http://eudml.org/doc/30653>.

@article{Boeckx2001,
abstract = {As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.},
author = {Boeckx, Eric, Vanhecke, Lieven},
journal = {Czechoslovak Mathematical Journal},
keywords = {unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics; unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics},
language = {eng},
number = {3},
pages = {523-544},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unit tangent sphere bundles with constant scalar curvature},
url = {http://eudml.org/doc/30653},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Boeckx, Eric
AU - Vanhecke, Lieven
TI - Unit tangent sphere bundles with constant scalar curvature
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 523
EP - 544
AB - As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.
LA - eng
KW - unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics; unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics
UR - http://eudml.org/doc/30653
ER -

References

top
  1. Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995. (1995) MR1340192
  2. Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978. (1978) Zbl0387.53010MR0496885
  3. Einstein manifolds, Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. (1987) Zbl0613.53001MR0867684
  4. Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. (1976) Zbl0319.53026MR0467588
  5. When is the tangent sphere bundle locally symmetric? Geometry and Topology, World Scientific, Singapore, 1989, pp. 15–30. (1989) MR1001586
  6. 10.1007/BF01228050, Geom. 49 (1994), 55–66. (1994) MR1261107DOI10.1007/BF01228050
  7. Riemannian manifolds of conullity two, World Scientific, Singapore, 1996. (1996) MR1462887
  8. Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427–448. (1997) MR1690045
  9. Curvature homogeneous unit tangent sphere bundles, Publ. Math. Debrecen 53 (1998), 389–413. (1998) MR1657491
  10. Three-dimensional Riemannian manifolds with constant principal Ricci curvatures ρ 1 = ρ 2 ρ 3 , J. Math. Phys. 37 (1996), 4062–4075. (1996) MR1400834
  11. Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28–67. (1981) MR0618545
  12. 10.1093/qmath/46.3.299, Quart. J. Math. Oxford 46 (1995), 299–320. (1995) MR1348819DOI10.1093/qmath/46.3.299
  13. 10.1007/BF00151525, Geom. Dedicata 7 (1978), 259–280. (1978) Zbl0378.53018MR0505561DOI10.1007/BF00151525
  14. 10.1007/BF02395060, Acta Math. 142 (1979), 157–198. (1979) MR0521460DOI10.1007/BF02395060
  15. 10.1017/S0308210500032571, Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 343–364. (1982) MR0677493DOI10.1017/S0308210500032571
  16. 10.1023/A:1006548328030, Ann. Global Anal. Geom. 15 (1997), 157–171. (1997) MR1448723DOI10.1023/A:1006548328030
  17. A note to a theorem by K. Sekigawa, Comment. Math. Univ. Carolin. 30 (1989), 85–88. (1989) Zbl0679.53043MR0995705
  18. 10.1017/S002776300000461X, Nagoya Math. J. 132 (1993), 1–36. (1993) MR1253692DOI10.1017/S002776300000461X
  19. An explicit classification of 3-dimensional Riemannian spaces satisfying R ( X , Y ) · R = 0 , Czechoslovak Math. J. 46 (1996), 427–474. (1996) Zbl0879.53014MR1408298
  20. 10.1016/S0001-8708(76)80002-3, Adv. Math. 21 (1976), 293–329. (1976) Zbl0341.53030MR0425012DOI10.1016/S0001-8708(76)80002-3
  21. 10.1007/BF01761461, Ann. Mat. Pura Appl. 150 (1988), 1–20. (1988) MR0946027DOI10.1007/BF01761461
  22. Volume preserving geodesic symmetries on four-dimensional Kähler manifolds, Differential Geometry Peñiscola, 1985, Proceedings, A. M. Naveira, A. Ferrández and F. Mascaró (eds.), Lecture Notes in Math. 1209, Springer, pp. 275–290. MR0863763
  23. 10.1002/cpa.3160130408, Comm. Pure Appl. Math. 13 (1960), 685–697. (1960) Zbl0171.42503MR0131248DOI10.1002/cpa.3160130408
  24. The curvature of 4-dimensional Einstein spaces, Global Analysis. Papers in honor of K. Kodaira, Princeton University Press, Princeton, 1969, pp. 355–365. (1969) MR0256303
  25. Structure theorems on Riemannian manifolds satisfying R ( X , Y ) · R = 0 , I, Local version, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165
  26. 10.2748/tmj/1178241040, Tôhoku Math. J. 27 (1975), 103–110. (1975) Zbl0323.53037MR0442852DOI10.2748/tmj/1178241040
  27. 10.1007/BF01782616, Ann. Mat. Pura Appl. 172 (1997), 287–295. (1997) Zbl0933.53020MR1621175DOI10.1007/BF01782616
  28. The curvature of the Sasaki metric of tangent sphere bundles (Russian), Ukrain. Geom. Sb. 28 (1985), 132–145. (1985) MR0801377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.