Unit tangent sphere bundles with constant scalar curvature
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 3, page 523-544
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBoeckx, Eric, and Vanhecke, Lieven. "Unit tangent sphere bundles with constant scalar curvature." Czechoslovak Mathematical Journal 51.3 (2001): 523-544. <http://eudml.org/doc/30653>.
@article{Boeckx2001,
abstract = {As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.},
author = {Boeckx, Eric, Vanhecke, Lieven},
journal = {Czechoslovak Mathematical Journal},
keywords = {unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics; unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics},
language = {eng},
number = {3},
pages = {523-544},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unit tangent sphere bundles with constant scalar curvature},
url = {http://eudml.org/doc/30653},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Boeckx, Eric
AU - Vanhecke, Lieven
TI - Unit tangent sphere bundles with constant scalar curvature
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 523
EP - 544
AB - As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.
LA - eng
KW - unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics; unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics
UR - http://eudml.org/doc/30653
ER -
References
top- Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995. (1995) MR1340192
- Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978. (1978) Zbl0387.53010MR0496885
- Einstein manifolds, Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. (1987) Zbl0613.53001MR0867684
- Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. (1976) Zbl0319.53026MR0467588
- When is the tangent sphere bundle locally symmetric? Geometry and Topology, World Scientific, Singapore, 1989, pp. 15–30. (1989) MR1001586
- 10.1007/BF01228050, Geom. 49 (1994), 55–66. (1994) MR1261107DOI10.1007/BF01228050
- Riemannian manifolds of conullity two, World Scientific, Singapore, 1996. (1996) MR1462887
- Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427–448. (1997) MR1690045
- Curvature homogeneous unit tangent sphere bundles, Publ. Math. Debrecen 53 (1998), 389–413. (1998) MR1657491
- Three-dimensional Riemannian manifolds with constant principal Ricci curvatures , J. Math. Phys. 37 (1996), 4062–4075. (1996) MR1400834
- Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28–67. (1981) MR0618545
- 10.1093/qmath/46.3.299, Quart. J. Math. Oxford 46 (1995), 299–320. (1995) MR1348819DOI10.1093/qmath/46.3.299
- 10.1007/BF00151525, Geom. Dedicata 7 (1978), 259–280. (1978) Zbl0378.53018MR0505561DOI10.1007/BF00151525
- 10.1007/BF02395060, Acta Math. 142 (1979), 157–198. (1979) MR0521460DOI10.1007/BF02395060
- 10.1017/S0308210500032571, Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 343–364. (1982) MR0677493DOI10.1017/S0308210500032571
- 10.1023/A:1006548328030, Ann. Global Anal. Geom. 15 (1997), 157–171. (1997) MR1448723DOI10.1023/A:1006548328030
- A note to a theorem by K. Sekigawa, Comment. Math. Univ. Carolin. 30 (1989), 85–88. (1989) Zbl0679.53043MR0995705
- 10.1017/S002776300000461X, Nagoya Math. J. 132 (1993), 1–36. (1993) MR1253692DOI10.1017/S002776300000461X
- An explicit classification of 3-dimensional Riemannian spaces satisfying , Czechoslovak Math. J. 46 (1996), 427–474. (1996) Zbl0879.53014MR1408298
- 10.1016/S0001-8708(76)80002-3, Adv. Math. 21 (1976), 293–329. (1976) Zbl0341.53030MR0425012DOI10.1016/S0001-8708(76)80002-3
- 10.1007/BF01761461, Ann. Mat. Pura Appl. 150 (1988), 1–20. (1988) MR0946027DOI10.1007/BF01761461
- Volume preserving geodesic symmetries on four-dimensional Kähler manifolds, Differential Geometry Peñiscola, 1985, Proceedings, A. M. Naveira, A. Ferrández and F. Mascaró (eds.), Lecture Notes in Math. 1209, Springer, pp. 275–290. MR0863763
- 10.1002/cpa.3160130408, Comm. Pure Appl. Math. 13 (1960), 685–697. (1960) Zbl0171.42503MR0131248DOI10.1002/cpa.3160130408
- The curvature of 4-dimensional Einstein spaces, Global Analysis. Papers in honor of K. Kodaira, Princeton University Press, Princeton, 1969, pp. 355–365. (1969) MR0256303
- Structure theorems on Riemannian manifolds satisfying , I, Local version, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165
- 10.2748/tmj/1178241040, Tôhoku Math. J. 27 (1975), 103–110. (1975) Zbl0323.53037MR0442852DOI10.2748/tmj/1178241040
- 10.1007/BF01782616, Ann. Mat. Pura Appl. 172 (1997), 287–295. (1997) Zbl0933.53020MR1621175DOI10.1007/BF01782616
- The curvature of the Sasaki metric of tangent sphere bundles (Russian), Ukrain. Geom. Sb. 28 (1985), 132–145. (1985) MR0801377
Citations in EuDML Documents
top- M. T. K. Abbassi, Giovanni Calvaruso, -natural metrics of constant curvature on unit tangent sphere bundles
- Teresa Arias-Marco, Oldřich Kowalski, Classification of -dimensional homogeneous weakly Einstein manifolds
- Oldřich Kowalski, Masami Sekizawa, On Riemannian geometry of tangent sphere bundles with arbitrary constant radius
- Yunhee Euh, Jeong Hyeong Park, Kouei Sekigawa, A curvature identity on a 6-dimensional Riemannian manifold and its applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.