Characterization on Mixed Generalized Quasi-Einstein Manifold

Sampa Pahan; Buddhadev Pal; Arindam BHATTACHARYYA

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 2, page 143-155
  • ISSN: 0231-9721

Abstract

top
In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.

How to cite

top

Pahan, Sampa, Pal, Buddhadev, and BHATTACHARYYA, Arindam. "Characterization on Mixed Generalized Quasi-Einstein Manifold." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 143-155. <http://eudml.org/doc/287908>.

@article{Pahan2016,
abstract = {In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.},
author = {Pahan, Sampa, Pal, Buddhadev, BHATTACHARYYA, Arindam},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Einstein manifold; quasi-Einstein manifold; generalized quasi-Einstein manifold; mixed generalized quasi-Einstein manifold; super quasi-Einstein manifold; warped product},
language = {eng},
number = {2},
pages = {143-155},
publisher = {Palacký University Olomouc},
title = {Characterization on Mixed Generalized Quasi-Einstein Manifold},
url = {http://eudml.org/doc/287908},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Pahan, Sampa
AU - Pal, Buddhadev
AU - BHATTACHARYYA, Arindam
TI - Characterization on Mixed Generalized Quasi-Einstein Manifold
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 143
EP - 155
AB - In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.
LA - eng
KW - Einstein manifold; quasi-Einstein manifold; generalized quasi-Einstein manifold; mixed generalized quasi-Einstein manifold; super quasi-Einstein manifold; warped product
UR - http://eudml.org/doc/287908
ER -

References

top
  1. Baishya, K. K., Peška, P., On the example of almost pseudo-Z-symmetric manifolds, . Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 55, 1 (2016), 5–40. (2016) Zbl1365.53021MR3674593
  2. Bejan, C. L., Characterization of quasi Einstein manifolds, . An. Stiint. Univ.“Al. I. Cuza” Iasi Mat. (N.S.) 53, suppl. 1 (2007), 67–72. (2007) MR2522383
  3. Besse, A. L., Einstein Manifolds, . Springer-Verlag, New York, 1987. (1987) Zbl0613.53001MR0867684
  4. Bhattacharya,, A., De, T., On mixed generalized quasi Einstein manifolds, . Differ. Geom. Dyn. Syst. 9 (2007), 40–46, (electronic). (2007) MR2308620
  5. Bishop, R. L., O’Neill, B., Geometry of slant Submanifolds, . Trans. Amer. Math. Soc. 145 (1969), 1–49. (1969) MR0251664
  6. Chaki, M. C., On super quasi-Einstein manifolds, . Publ. Math. Debrecen 64 (2004), 481–488. (2004) Zbl1093.53045MR2059079
  7. Chen, B. Y., 10.4099/math1924.26.105, . Japan. J. Math. (N.S.) 26 (2000), 105–127. (2000) Zbl1026.53009MR1771434DOI10.4099/math1924.26.105
  8. De, U. C., Ghosh, G. C., On generalized quasi-Einstein manifolds, . Kyungpook Math. J. 44 (2004), 607–615. (2004) Zbl1076.53509MR2108466
  9. Deszcz, R., Glogowska, M., Holtos, M., Senturk, Z., On certain quasi-Einstein semisymmetric hypersurfaces, . Annl. Univ. Sci. Budapest. Eötvös Sect. Math 41 (1998), 151–164. (1998) MR1691925
  10. Dumitru, D., On Einstein spaces of odd dimension, . Bul. Transilv. Univ. Brasov Ser. B (N.S.) 14, suppl. 49 (2007), 95–97. (2007) Zbl1195.53058MR2446794
  11. Formella, S., Mikeš, J., Geodesic mappings of Einstein spaces, . Ann. Sci. Stetinenses 9 (1994), 31–40. (1994) 
  12. Halder, K., Pal, B., Bhattacharya, A., De, T., Characterization of super quasi Einstein manifolds, . An. Stiint. Univ.“Al. I. Cuza” Iasi Mat. (N.S.) 60, 1 (2014), 99–108. (2014) MR3252460
  13. Hinterleitner, I., Mikeš, J., Geodesic mappings and Einstein spaces, . In: Geometric methods in physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. (2013) Zbl1268.53049MR3364052
  14. Kagan, V. F., Subprojective Spaces, . Fizmatgiz, Moscow, 1961. (1961) 
  15. O'Neill, B., Semi-Riemannian Geometry wih Applications to Relativity, (1983) 
  16. Mikeš, J., 10.1007/BF02365193, . J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  17. Mikeš, J., Geodesic mappings of special Riemannian spaces, . In: Coll. Math. Soc. J. Bolyai 46, Topics in Diff. Geom. Debrecen (Hungary), 1984, Amsterdam, 1988, 793–813. (1988) MR0933875
  18. Mikeš, J., 10.1007/BF01709156, . Math. Notes 28 (1981), 922–923. (1981) Zbl0461.53013MR0603226DOI10.1007/BF01709156
  19. Mikeš, J., Differential geometry of special mappings, . Palacky Univ. Press, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  20. Singer, I. M., Thorpe, J. A., The curvature of 4-dimensional Einstein spaces, In: Global Analysis (Papers in honor of K. Kodaira, Princeton Univ. Press, Princeton, 1969, 355–365. (1969) Zbl0199.25401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.