Characterization on Mixed Generalized Quasi-Einstein Manifold
Sampa Pahan; Buddhadev Pal; Arindam BHATTACHARYYA
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 2, page 143-155
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topPahan, Sampa, Pal, Buddhadev, and BHATTACHARYYA, Arindam. "Characterization on Mixed Generalized Quasi-Einstein Manifold." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 143-155. <http://eudml.org/doc/287908>.
@article{Pahan2016,
abstract = {In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.},
author = {Pahan, Sampa, Pal, Buddhadev, BHATTACHARYYA, Arindam},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Einstein manifold; quasi-Einstein manifold; generalized quasi-Einstein manifold; mixed generalized quasi-Einstein manifold; super quasi-Einstein manifold; warped product},
language = {eng},
number = {2},
pages = {143-155},
publisher = {Palacký University Olomouc},
title = {Characterization on Mixed Generalized Quasi-Einstein Manifold},
url = {http://eudml.org/doc/287908},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Pahan, Sampa
AU - Pal, Buddhadev
AU - BHATTACHARYYA, Arindam
TI - Characterization on Mixed Generalized Quasi-Einstein Manifold
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 143
EP - 155
AB - In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.
LA - eng
KW - Einstein manifold; quasi-Einstein manifold; generalized quasi-Einstein manifold; mixed generalized quasi-Einstein manifold; super quasi-Einstein manifold; warped product
UR - http://eudml.org/doc/287908
ER -
References
top- Baishya, K. K., Peška, P., On the example of almost pseudo-Z-symmetric manifolds, . Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 55, 1 (2016), 5–40. (2016) Zbl1365.53021MR3674593
- Bejan, C. L., Characterization of quasi Einstein manifolds, . An. Stiint. Univ.“Al. I. Cuza” Iasi Mat. (N.S.) 53, suppl. 1 (2007), 67–72. (2007) MR2522383
- Besse, A. L., Einstein Manifolds, . Springer-Verlag, New York, 1987. (1987) Zbl0613.53001MR0867684
- Bhattacharya,, A., De, T., On mixed generalized quasi Einstein manifolds, . Differ. Geom. Dyn. Syst. 9 (2007), 40–46, (electronic). (2007) MR2308620
- Bishop, R. L., O’Neill, B., Geometry of slant Submanifolds, . Trans. Amer. Math. Soc. 145 (1969), 1–49. (1969) MR0251664
- Chaki, M. C., On super quasi-Einstein manifolds, . Publ. Math. Debrecen 64 (2004), 481–488. (2004) Zbl1093.53045MR2059079
- Chen, B. Y., 10.4099/math1924.26.105, . Japan. J. Math. (N.S.) 26 (2000), 105–127. (2000) Zbl1026.53009MR1771434DOI10.4099/math1924.26.105
- De, U. C., Ghosh, G. C., On generalized quasi-Einstein manifolds, . Kyungpook Math. J. 44 (2004), 607–615. (2004) Zbl1076.53509MR2108466
- Deszcz, R., Glogowska, M., Holtos, M., Senturk, Z., On certain quasi-Einstein semisymmetric hypersurfaces, . Annl. Univ. Sci. Budapest. Eötvös Sect. Math 41 (1998), 151–164. (1998) MR1691925
- Dumitru, D., On Einstein spaces of odd dimension, . Bul. Transilv. Univ. Brasov Ser. B (N.S.) 14, suppl. 49 (2007), 95–97. (2007) Zbl1195.53058MR2446794
- Formella, S., Mikeš, J., Geodesic mappings of Einstein spaces, . Ann. Sci. Stetinenses 9 (1994), 31–40. (1994)
- Halder, K., Pal, B., Bhattacharya, A., De, T., Characterization of super quasi Einstein manifolds, . An. Stiint. Univ.“Al. I. Cuza” Iasi Mat. (N.S.) 60, 1 (2014), 99–108. (2014) MR3252460
- Hinterleitner, I., Mikeš, J., Geodesic mappings and Einstein spaces, . In: Geometric methods in physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. (2013) Zbl1268.53049MR3364052
- Kagan, V. F., Subprojective Spaces, . Fizmatgiz, Moscow, 1961. (1961)
- O'Neill, B., Semi-Riemannian Geometry wih Applications to Relativity, (1983)
- Mikeš, J., 10.1007/BF02365193, . J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
- Mikeš, J., Geodesic mappings of special Riemannian spaces, . In: Coll. Math. Soc. J. Bolyai 46, Topics in Diff. Geom. Debrecen (Hungary), 1984, Amsterdam, 1988, 793–813. (1988) MR0933875
- Mikeš, J., 10.1007/BF01709156, . Math. Notes 28 (1981), 922–923. (1981) Zbl0461.53013MR0603226DOI10.1007/BF01709156
- Mikeš, J., Differential geometry of special mappings, . Palacky Univ. Press, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
- Singer, I. M., Thorpe, J. A., The curvature of 4-dimensional Einstein spaces, In: Global Analysis (Papers in honor of K. Kodaira, Princeton Univ. Press, Princeton, 1969, 355–365. (1969) Zbl0199.25401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.