On the Example of Almost Pseudo-Z-symmetric Manifolds

Kanak Kanti Baishya; Patrik Peška

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 1, page 5-10
  • ISSN: 0231-9721

Abstract

top
In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings.

How to cite

top

Baishya, Kanak Kanti, and Peška, Patrik. "On the Example of Almost Pseudo-Z-symmetric Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 5-10. <http://eudml.org/doc/286703>.

@article{Baishya2016,
abstract = {In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings.},
author = {Baishya, Kanak Kanti, Peška, Patrik},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {(pseudo-) Riemannian manifold; almost pseudo-Z-symmetric spaces; equidistant spaces},
language = {eng},
number = {1},
pages = {5-10},
publisher = {Palacký University Olomouc},
title = {On the Example of Almost Pseudo-Z-symmetric Manifolds},
url = {http://eudml.org/doc/286703},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Baishya, Kanak Kanti
AU - Peška, Patrik
TI - On the Example of Almost Pseudo-Z-symmetric Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 5
EP - 10
AB - In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings.
LA - eng
KW - (pseudo-) Riemannian manifold; almost pseudo-Z-symmetric spaces; equidistant spaces
UR - http://eudml.org/doc/286703
ER -

References

top
  1. Brinkmann, H. W., 10.1007/BF01208647, . Math. Ann. 94 (1925). (1925) MR1512246DOI10.1007/BF01208647
  2. Cartan, É., Les espaces riemanniens symétriques, . Verhandlungen Kongress Zürich 1 (1932), 152–161. (1932) Zbl0006.42102
  3. Chepurna, O., Hinterleitner, I., On the mobility degree of (pseudo-) Riemannian spaces with respect to concircular mappings, . Miskolc Math. Notes 14, 2 (2013), 561–568. (2013) Zbl1299.53036MR3144092
  4. De, U. C., Pal, P., On almost pseudo-Z-symmetric manifolds, . Acta Univ. Palack. Olomuc., Fac. Rer. Nat., Math. 53, 1 (2014), 25–43. (2014) Zbl1312.53065MR3331069
  5. Dey, S. K., Baishya, K. K., On the existence of some types of Kenmotsu manifolds, . Univers. J. Math. Math. Sci. 6, 1 (2014), 13–32. (2014) Zbl1309.53030MR3099046
  6. Hinterleitner, I., Mikeš, J., Geodesic mappings onto Weyl manifolds, . J. Appl. Math. 2, 1 (2009), 125–133, In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Bratislava, 2009, 423–430. (2009) 
  7. Kaigorodov, V. R., 10.1007/BF02105213, . J. Sov. Math. 28 (1985), 256–273. (1985) Zbl0559.53008DOI10.1007/BF02105213
  8. Mikeš, J., Geodesic mappings of semisymmetric Riemannian spaces, . Archives at VINITI, Odessk. Univ. 3924-76, Moscow, 1976. (1976) 
  9. Mikeš, J., 10.1007/BF01157926, . Math. Notes 28 (1981), 622–624, Transl. from: Mat. Zametki 28 (1980), 313–317. (1981) MR0587405DOI10.1007/BF01157926
  10. Mikeš, J., Projective-symmetric and projective-recurrent affinely connected spaces, . Tr. Geom. Semin. 13 (1981), 61–62. (1981) 
  11. Mikeš, J., 10.1007/BF02365193, . J. Math. Sci. (New York) 78, 3 (1996), 311–333, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 11 (2002), 121–162. (1996) MR1384327DOI10.1007/BF02365193
  12. Mikeš, J., 10.1007/BF02414875, . J. Math. Sci. (New York) 89, 3 (1998), 1334–1353, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 (2002), 258–289. (1998) MR1619720DOI10.1007/BF02414875
  13. Mikeš, J., Stepanova, E., Vanžurová, A., Differential Geometry of Special Mappings, . Palacký University, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  14. Mikeš, J., Tolobaev, O. S., Symmetric and projectively symmetric spaces with affine connection, . In: Investigations in topological and generalized spaces, Kirgiz. Gos. Univ., Frunze, 1988, 58–63, (in Russian). (1988) MR1165335
  15. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, . Palacký University, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  16. Shaikh, A. A., Baishya, K. K., Eyasmin, S., On ϕ -recurrent generalized ( k , μ ) -contact metric manifolds, . Lobachevskii J. Math. 27, 3-13 (2007), electronic only. (2007) MR2396965
  17. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, . Nauka, Moscow, 1979. (1979) Zbl0637.53020MR0552022
  18. Tamássy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian manifolds, . In: Publ. Comp. Colloq. Math. Soc. János Bolyai 56, North-Holland Publ., Amsterdam, 1992, 663–670. (1992) Zbl0791.53021MR1211691
  19. Walker, A. G., 10.1112/plms/s2-52.1.36, . Proc. London Math. Soc. 52, 2 (1950), 36–64. (1950) Zbl0039.17702MR0037574DOI10.1112/plms/s2-52.1.36
  20. Yano, K., 10.3792/pia/1195578943, . Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511. (1940) Zbl0025.08504DOI10.3792/pia/1195578943
  21. Yılmaz, H. B., On decomposable almost pseudo conharmonically symmetric manifolds, . Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 51, 1 (2012), 111–124. (2012) Zbl1273.53010MR3060013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.