Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds

Krishnendu De; Uday Chand De

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 2, page 29-40
  • ISSN: 0231-9721

Abstract

top
The object of the present paper is to study ξ -projectively flat and φ -projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.

How to cite

top

De, Krishnendu, and De, Uday Chand. "Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 29-40. <http://eudml.org/doc/287918>.

@article{De2016,
abstract = {The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.},
author = {De, Krishnendu, De, Uday Chand},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Trans-Sasakian manifold; $\xi $-projectively flat; $\phi $-projectively flat; Einstein manifold},
language = {eng},
number = {2},
pages = {29-40},
publisher = {Palacký University Olomouc},
title = {Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds},
url = {http://eudml.org/doc/287918},
volume = {55},
year = {2016},
}

TY - JOUR
AU - De, Krishnendu
AU - De, Uday Chand
TI - Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 29
EP - 40
AB - The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.
LA - eng
KW - Trans-Sasakian manifold; $\xi $-projectively flat; $\phi $-projectively flat; Einstein manifold
UR - http://eudml.org/doc/287918
ER -

References

top
  1. Bagewadi, C. S., Venkatesha, A., Some curvature tensors on a trans-Sasakian manifold, . Turk. J. Math. 31 (2007), 111–121. (2007) Zbl1138.53028MR2335656
  2. Blair, D. E., Contact Manifolds in Riemannian Geometry, . Lecture Note in Mathematics 509, Springer-Verlag, Berlin–New York, 1976. (1976) Zbl0319.53026MR0467588
  3. Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, . Progress in Mathematics 203, Birkhäuser, Boston, 2002 (2002) Zbl1011.53001MR1874240
  4. Blair, D. E., Oubina, J. A., 10.5565/PUBLMAT_34190_15, . Publ. Mat. 34, 1 (1990), 199–207. (1990) Zbl0721.53035MR1059874DOI10.5565/PUBLMAT_34190_15
  5. Cabrerizo, J. L., Fernandez, L. M., Fernandez, M., Zhen, G., 10.1023/A:1006696410826, . Acta Math. Hungar. 82, 4 (1999), 331–340. (1999) Zbl0924.53024MR1675621DOI10.1023/A:1006696410826
  6. Chinea, D., Gonzales, C., 10.1007/BF01766972, . Ann. Mat. Pura Appl. 156, 4 (1990), 15–36. (1990) MR1080209DOI10.1007/BF01766972
  7. Chinea, D., Gonzales, C., Curvature relations in trans-sasakian manifolds, . In: Proceedings of the XIIth Portuguese–Spanish Conference on Mathematics II, Braga, 1987, Univ. Minho, Braga, 1987, 564–571. (1987) MR1139218
  8. De, U. C., De, K., 10.4134/CKMS.2012.27.4.795, . Commun. Korean Math. Soc. 27 (2012), 795–808. (2012) MR3025885DOI10.4134/CKMS.2012.27.4.795
  9. De, U. C., Sarkar, A., On three-dimensional trans-Sasakian manifolds, . Extracta Mathematicae 23, 3 (2008), 265–277. (2008) Zbl1175.53058MR2524542
  10. De, U. C., Tripathi, M. M., Ricci tensor in 3-dimensional trans-Sasakian manifolds, . Kyungpook Math. J. 43, 2 (2003), 247–255. (2003) Zbl1073.53060MR1982228
  11. Gray, A., Hervella, L. M., 10.1007/BF01796539, . Ann. Mat. Pura Appl. 123, 4 (1980), 35–58. (1980) Zbl0444.53032MR0581924DOI10.1007/BF01796539
  12. Janssens, D., Vanhecke, L., 10.2996/kmj/1138036310, . Kodai Math. J. 4 (1981), 1–27. (1981) Zbl0472.53043MR0615665DOI10.2996/kmj/1138036310
  13. Kim, J. S., Prasad, R., Tripathi, M. M., 10.4134/JKMS.2002.39.6.953, . J. Korean Math. Soc. 39 (2002), 953–961. (2002) Zbl1025.53023MR1932790DOI10.4134/JKMS.2002.39.6.953
  14. Kowalski, O., An explicit classification of 3-dimensional Riemannian spaces satisfying R ( X , Y ) . R = 0 , . Czechoslovak Math. J. 46(121) (1996), 427–474. (1996) MR1408298
  15. Marrero, J. C., 10.1007/BF01760000, . Ann. Mat. Pura Appl. 162, 4 (1992), 77–86. (1992) Zbl0772.53036MR1199647DOI10.1007/BF01760000
  16. Marrero, J. C., Chinea, D., On trans-sasakian manifolds, . In: Proceedings of the XIVth Spanish–Portuguese Conference on Mathematics I-III, Puerto de la Cruz, 1989, Univ.La Laguna, La Laguna, 1990, 655–659. (1990) MR1112951
  17. Mikeš, J., On Sasaki spaces and equidistant Kähler spaces, . Sov. Math., Dokl. 34 (1987), 428–431. (1987) Zbl0631.53018MR0819428
  18. Mikeš, J., Differential Geometry of Special Mappings, . Palacky Univ. Press, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  19. Mikeš, J., Starko, G. A., On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces, . Ukr. Geom. Sb. 32 (1989), 92–98. (1989) Zbl0711.53042MR1049372
  20. Mishra, R. S., Structures on Differentiable Manifold and Their Applications, . Chandrama Prakasana, Allahabad, 1984. (1984) 
  21. Oubina, J. A., New classes of almost contact metric structures, . Publ. Math. Debrecen 32, 3-4 (1985), 187–193. (1985) Zbl0611.53032MR0834769
  22. Ozgur, C., φ -conformally flat Lorentzian Para-Sasakian manifolds, . Radovi Matematicki 12 (2003), 99–106. (2003) MR2022248
  23. Shukla, S. S., Singh, D. D., On ϵ -trans-sasakian manifolds, . Int. J. Math. Anal. 49 (2010), 2401–2414. (2010) MR2770033
  24. Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, . Nauka, Moscow, 1979. (1979) Zbl0637.53020
  25. Szabo, Z. I., 10.4310/jdg/1214437486, . J. Diff. Geom. 17 (1982), 531–582. (1982) Zbl0508.53025MR0683165DOI10.4310/jdg/1214437486
  26. Yano, K., Bochner, S., Curvature and Betti Numbers, . Annals of Math. Studies 32, Princeton Univ. Press, Princeton, 1953. (1953) Zbl0051.39402MR0062505
  27. Yano, K., Kon, M., Structure on Manifolds, . Series in Math. 3, World Scientific, Singapore, 1984. (1984) MR0794310
  28. Zhen, G., Cabrerizo, J. L., Fernandez, L. M., Fernandez, M., On ξ -conformally flat contact metric manifolds, . Indian J. Pure Appl. Math. 28 (1997), 725–734. (1997) Zbl0882.53031MR1461184

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.