Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 2, page 29-40
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topDe, Krishnendu, and De, Uday Chand. "Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 29-40. <http://eudml.org/doc/287918>.
@article{De2016,
abstract = {The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.},
author = {De, Krishnendu, De, Uday Chand},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Trans-Sasakian manifold; $\xi $-projectively flat; $\phi $-projectively flat; Einstein manifold},
language = {eng},
number = {2},
pages = {29-40},
publisher = {Palacký University Olomouc},
title = {Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds},
url = {http://eudml.org/doc/287918},
volume = {55},
year = {2016},
}
TY - JOUR
AU - De, Krishnendu
AU - De, Uday Chand
TI - Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 29
EP - 40
AB - The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.
LA - eng
KW - Trans-Sasakian manifold; $\xi $-projectively flat; $\phi $-projectively flat; Einstein manifold
UR - http://eudml.org/doc/287918
ER -
References
top- Bagewadi, C. S., Venkatesha, A., Some curvature tensors on a trans-Sasakian manifold, . Turk. J. Math. 31 (2007), 111–121. (2007) Zbl1138.53028MR2335656
- Blair, D. E., Contact Manifolds in Riemannian Geometry, . Lecture Note in Mathematics 509, Springer-Verlag, Berlin–New York, 1976. (1976) Zbl0319.53026MR0467588
- Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, . Progress in Mathematics 203, Birkhäuser, Boston, 2002 (2002) Zbl1011.53001MR1874240
- Blair, D. E., Oubina, J. A., 10.5565/PUBLMAT_34190_15, . Publ. Mat. 34, 1 (1990), 199–207. (1990) Zbl0721.53035MR1059874DOI10.5565/PUBLMAT_34190_15
- Cabrerizo, J. L., Fernandez, L. M., Fernandez, M., Zhen, G., 10.1023/A:1006696410826, . Acta Math. Hungar. 82, 4 (1999), 331–340. (1999) Zbl0924.53024MR1675621DOI10.1023/A:1006696410826
- Chinea, D., Gonzales, C., 10.1007/BF01766972, . Ann. Mat. Pura Appl. 156, 4 (1990), 15–36. (1990) MR1080209DOI10.1007/BF01766972
- Chinea, D., Gonzales, C., Curvature relations in trans-sasakian manifolds, . In: Proceedings of the XIIth Portuguese–Spanish Conference on Mathematics II, Braga, 1987, Univ. Minho, Braga, 1987, 564–571. (1987) MR1139218
- De, U. C., De, K., 10.4134/CKMS.2012.27.4.795, . Commun. Korean Math. Soc. 27 (2012), 795–808. (2012) MR3025885DOI10.4134/CKMS.2012.27.4.795
- De, U. C., Sarkar, A., On three-dimensional trans-Sasakian manifolds, . Extracta Mathematicae 23, 3 (2008), 265–277. (2008) Zbl1175.53058MR2524542
- De, U. C., Tripathi, M. M., Ricci tensor in 3-dimensional trans-Sasakian manifolds, . Kyungpook Math. J. 43, 2 (2003), 247–255. (2003) Zbl1073.53060MR1982228
- Gray, A., Hervella, L. M., 10.1007/BF01796539, . Ann. Mat. Pura Appl. 123, 4 (1980), 35–58. (1980) Zbl0444.53032MR0581924DOI10.1007/BF01796539
- Janssens, D., Vanhecke, L., 10.2996/kmj/1138036310, . Kodai Math. J. 4 (1981), 1–27. (1981) Zbl0472.53043MR0615665DOI10.2996/kmj/1138036310
- Kim, J. S., Prasad, R., Tripathi, M. M., 10.4134/JKMS.2002.39.6.953, . J. Korean Math. Soc. 39 (2002), 953–961. (2002) Zbl1025.53023MR1932790DOI10.4134/JKMS.2002.39.6.953
- Kowalski, O., An explicit classification of 3-dimensional Riemannian spaces satisfying , . Czechoslovak Math. J. 46(121) (1996), 427–474. (1996) MR1408298
- Marrero, J. C., 10.1007/BF01760000, . Ann. Mat. Pura Appl. 162, 4 (1992), 77–86. (1992) Zbl0772.53036MR1199647DOI10.1007/BF01760000
- Marrero, J. C., Chinea, D., On trans-sasakian manifolds, . In: Proceedings of the XIVth Spanish–Portuguese Conference on Mathematics I-III, Puerto de la Cruz, 1989, Univ.La Laguna, La Laguna, 1990, 655–659. (1990) MR1112951
- Mikeš, J., On Sasaki spaces and equidistant Kähler spaces, . Sov. Math., Dokl. 34 (1987), 428–431. (1987) Zbl0631.53018MR0819428
- Mikeš, J., Differential Geometry of Special Mappings, . Palacky Univ. Press, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
- Mikeš, J., Starko, G. A., On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces, . Ukr. Geom. Sb. 32 (1989), 92–98. (1989) Zbl0711.53042MR1049372
- Mishra, R. S., Structures on Differentiable Manifold and Their Applications, . Chandrama Prakasana, Allahabad, 1984. (1984)
- Oubina, J. A., New classes of almost contact metric structures, . Publ. Math. Debrecen 32, 3-4 (1985), 187–193. (1985) Zbl0611.53032MR0834769
- Ozgur, C., -conformally flat Lorentzian Para-Sasakian manifolds, . Radovi Matematicki 12 (2003), 99–106. (2003) MR2022248
- Shukla, S. S., Singh, D. D., On -trans-sasakian manifolds, . Int. J. Math. Anal. 49 (2010), 2401–2414. (2010) MR2770033
- Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, . Nauka, Moscow, 1979. (1979) Zbl0637.53020
- Szabo, Z. I., 10.4310/jdg/1214437486, . J. Diff. Geom. 17 (1982), 531–582. (1982) Zbl0508.53025MR0683165DOI10.4310/jdg/1214437486
- Yano, K., Bochner, S., Curvature and Betti Numbers, . Annals of Math. Studies 32, Princeton Univ. Press, Princeton, 1953. (1953) Zbl0051.39402MR0062505
- Yano, K., Kon, M., Structure on Manifolds, . Series in Math. 3, World Scientific, Singapore, 1984. (1984) MR0794310
- Zhen, G., Cabrerizo, J. L., Fernandez, L. M., Fernandez, M., On -conformally flat contact metric manifolds, . Indian J. Pure Appl. Math. 28 (1997), 725–734. (1997) Zbl0882.53031MR1461184
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.