The Cauchy problem for the liquid crystals system in the critical Besov space with negative index
Sen Ming; Han Yang; Zili Chen; Ls Yong
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 37-55
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMing, Sen, et al. "The Cauchy problem for the liquid crystals system in the critical Besov space with negative index." Czechoslovak Mathematical Journal 67.1 (2017): 37-55. <http://eudml.org/doc/287923>.
@article{Ming2017,
abstract = {The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space $\dot\{B\}_\{p,1\}^\{n/p-1\}(\mathbb \{R\}^n)\times \dot\{B\}_\{p,1\}^\{n/p\}(\mathbb \{R\}^n)$ with $n<p<2n$ is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed.},
author = {Ming, Sen, Yang, Han, Chen, Zili, Yong, Ls},
journal = {Czechoslovak Mathematical Journal},
keywords = {liquid crystals system; critical Besov space; negative index; well-posedness; blow-up},
language = {eng},
number = {1},
pages = {37-55},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Cauchy problem for the liquid crystals system in the critical Besov space with negative index},
url = {http://eudml.org/doc/287923},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Ming, Sen
AU - Yang, Han
AU - Chen, Zili
AU - Yong, Ls
TI - The Cauchy problem for the liquid crystals system in the critical Besov space with negative index
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 37
EP - 55
AB - The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space $\dot{B}_{p,1}^{n/p-1}(\mathbb {R}^n)\times \dot{B}_{p,1}^{n/p}(\mathbb {R}^n)$ with $n<p<2n$ is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed.
LA - eng
KW - liquid crystals system; critical Besov space; negative index; well-posedness; blow-up
UR - http://eudml.org/doc/287923
ER -
References
top- Abidi, H., 10.4171/RMI/505, Rev. Mat. Iberoam. 23 (2007), 537-586 French. (2007) Zbl1175.35099MR2371437DOI10.4171/RMI/505
- Abidi, H., Gui, G., Zhang, P., 10.1007/s00205-011-0473-4, Arch. Ration. Mech. Anal. 204 (2012), 189-230. (2012) Zbl1314.76021MR2898739DOI10.1007/s00205-011-0473-4
- Abidi, H., Zhang, P., On the global well-posedness of 2-D density-dependent Navier-Stokes system with variable viscosity, Available at Arxiv:1301.2371. MR3344050
- Bahouri, H., Chemin, J.-Y., Danchin, R., 10.1007/978-3-642-16830-7, Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg (2011). (2011) Zbl1227.35004MR2768550DOI10.1007/978-3-642-16830-7
- Cannone, M., 10.1016/s1874-5792(05)80006-0, Handbook of Mathematical Fluid Dynamics. Vol. III Elsevier/North Holland, Amsterdam S. Friedlander et al. (2004), 161-244. (2004) Zbl1222.35139MR2099035DOI10.1016/s1874-5792(05)80006-0
- Cavaterra, C., Rocca, E., Wu, H., 10.1016/j.jde.2013.03.009, J. Differ. Equations 255 (2013), 24-57. (2013) Zbl1282.35087MR3045633DOI10.1016/j.jde.2013.03.009
- Chen, Q., Miao, C., 10.1016/j.jde.2011.09.035, J. Differ. Equations 252 (2012), 2698-2724. (2012) Zbl1234.35193MR2860636DOI10.1016/j.jde.2011.09.035
- Danchin, R., 10.1081/PDE-100106132, Commun. Partial Differ. Equations 26 (2001), 1183-1233. (2001) Zbl1007.35071MR1855277DOI10.1081/PDE-100106132
- Danchin, R., Mucha, P. B., 10.1002/cpa.21409, Commun. Pure Appl. Math. 65 (2012), 1458-1480. (2012) Zbl1247.35088MR2957705DOI10.1002/cpa.21409
- Du, Y., Wang, K., 10.1016/j.jde.2013.07.066, J. Differ. Equations 256 (2014), 65-81. (2014) Zbl1320.35125MR3115835DOI10.1016/j.jde.2013.07.066
- Ericksen, J. L., 10.1007/bf00253358, Arch. Ration. Mech. Anal. 9 (1962), 371-378. (1962) Zbl0105.23403MR0137403DOI10.1007/bf00253358
- Fujita, H., Kato, T., 10.1007/BF00276188, Arch. Ration. Mech. Anal. 16 (1964), 269-315. (1964) Zbl0126.42301MR0166499DOI10.1007/BF00276188
- Hao, Y., Liu, X., 10.3934/cpaa.2014.13.225, Commun. Pure Appl. Anal. 13 (2014), 225-236. (2014) Zbl1273.76352MR3082558DOI10.3934/cpaa.2014.13.225
- Hong, M.-C., 10.1007/s00526-010-0331-5, Calc. Var. Partial Differ. Equ. 40 (2011), 15-36. (2011) Zbl1213.35014MR2745194DOI10.1007/s00526-010-0331-5
- Huang, J., Paicu, M., Zhang, P., 10.1016/j.matpur.2013.03.003, J. Math. Pures Appl. (9) 100 (2013), 806-831. (2013) Zbl1290.35184MR3125269DOI10.1016/j.matpur.2013.03.003
- Jiang, F., Jiang, S., Wang, D., 10.1007/s00205-014-0768-3, Arch. Ration. Mech. Anal. 214 (2014), 403-451. (2014) Zbl1307.35225MR3255696DOI10.1007/s00205-014-0768-3
- Li, X., Wang, D., 10.1016/j.jde.2011.08.045, J. Differ. Equations 252 (2012), 745-767. (2012) Zbl1277.35121MR2852225DOI10.1016/j.jde.2011.08.045
- Lin, F., 10.1002/cpa.3160420605, Commun. Pure Appl. Anal. 42 (1989), 789-814. (1989) Zbl0703.35173MR1003435DOI10.1002/cpa.3160420605
- Lin, F., Lin, J., Wang, C., 10.1007/s00205-009-0278-x, Arch. Ration. Mech. Anal. 197 (2010), 297-336. (2010) Zbl1346.76011MR2646822DOI10.1007/s00205-009-0278-x
- Lin, F., Liu, C., 10.3934/dcds.1996.2.1, Discrete Contin. Dyn. Syst. 2 (1996), 1-22. (1996) Zbl0948.35098MR1367385DOI10.3934/dcds.1996.2.1
- Lin, F., Liu, C., 10.1007/s002050000102, Arch. Ration. Mech. Anal. 154 (2000), 135-156. (2000) Zbl0963.35158MR1784963DOI10.1007/s002050000102
- Lin, J., Ding, S., 10.1002/mma.1548, Math. Methods Appl. Sci. 35 (2012), 158-173. (2012) Zbl1242.35006MR2876822DOI10.1002/mma.1548
- Liu, Q., Zhang, T., Zhao, J., 10.1016/j.jde.2014.11.002, J. Differ. Equations 258 (2015), 1519-1547. (2015) Zbl1308.35222MR3295591DOI10.1016/j.jde.2014.11.002
- Paicu, M., Zhang, P., Zhang, Z., 10.1080/03605302.2013.780079, Commun. Partial Differ. Equations 38 (2013), 1208-1234. (2013) Zbl1314.35086MR3169743DOI10.1080/03605302.2013.780079
- Wang, C., 10.1007/s00205-010-0343-5, Arch. Ration. Mech. Anal. 200 (2011), 1-19. (2011) Zbl1285.35085MR2781584DOI10.1007/s00205-010-0343-5
- Xu, F., Hao, S., Yuan, J., 10.1002/mma.3248, Math. Methods. Appl. Sci. 38 (2015), 2680-2702. (2015) Zbl06523185MR3382698DOI10.1002/mma.3248
- Xu, X., Zhang, Z., 10.1016/j.jde.2011.08.028, J. Differ. Equations 252 (2012), 1169-1181. (2012) Zbl1336.76005MR2853534DOI10.1016/j.jde.2011.08.028
- Zhao, J., Liu, Q., Cui, S., 10.3934/cpaa.2013.12.341, Commun. Pure Appl. Anal. 12 (2013), 341-357. (2013) Zbl1264.35007MR2972434DOI10.3934/cpaa.2013.12.341
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.