About G-rings
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 1, page 13-18
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMahdou, Najib. "About G-rings." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 13-18. <http://eudml.org/doc/287929>.
@article{Mahdou2017,
abstract = {In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if $R \subseteq T$ is a ring extension such that $mT\subseteq R$ for some regular element $m$ of $T$, then $T$ is a G-ring if and only if so is $R$. Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.},
author = {Mahdou, Najib},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {G-ring; pullback; trivial extension},
language = {eng},
number = {1},
pages = {13-18},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {About G-rings},
url = {http://eudml.org/doc/287929},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Mahdou, Najib
TI - About G-rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 13
EP - 18
AB - In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if $R \subseteq T$ is a ring extension such that $mT\subseteq R$ for some regular element $m$ of $T$, then $T$ is a G-ring if and only if so is $R$. Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.
LA - eng
KW - G-ring; pullback; trivial extension
UR - http://eudml.org/doc/287929
ER -
References
top- Adams J.C., 10.4153/CMB-1974-001-x, Canad. Math. Bull. 17 (1974), 1–4. Zbl0295.13004MR0354639DOI10.4153/CMB-1974-001-x
- Bakkari C., Kabbaj S., Mahdou N., 10.1016/j.jpaa.2009.04.011, J. Pure Appl. Algebra 214 (2010), no. 1, 53–60. Zbl1175.13008MR2561766DOI10.1016/j.jpaa.2009.04.011
- Bourbaki N., Commutative Algebra, Addison-Wesley, Reading, 1972. Zbl1107.13002
- Brewer J.W., Rutter E.A., 10.1307/mmj/1029001619, Michigan Math. J. 23 (1976), 33–42. Zbl0318.13007MR0401744DOI10.1307/mmj/1029001619
- Cahen P.J., 10.1007/BF01261971, Arch. Math. 51 (1988), 505–514. MR0973725DOI10.1007/BF01261971
- Dobbs D.E., G-Domain pairs, Internat. J. Commutative Rings 1 (2002), no. 2, 71–75. Zbl1072.13012MR2037658
- Dobbs D.E., Ishikawa T., 10.3836/tjm/1270141800, Tokyo J. Math. 10 (1987), 157–159. Zbl0629.13002MR0899480DOI10.3836/tjm/1270141800
- Dobbs D.E., Papick I., When is coherent?, Proc. Amer. Math. Soc. 56 (1976), 51–54. Zbl0329.13014MR0409448
- Fontana M., 10.1007/BF01796550, Ann. Mat. Pura Appl. 123 (1980), 331–355. Zbl0443.13001MR0581935DOI10.1007/BF01796550
- Gilmer R., 10.2140/pjm.1966.19.275, Pacific J. Math. 19 (1966), 275–284. Zbl0147.01501MR0204452DOI10.2140/pjm.1966.19.275
- Huckaba J.A., Commutative Rings with Zero Divisors, Marcel Dekker, New York-Basel, 1988. Zbl0637.13001MR0938741
- Kaplansky I., Commutative Rings, revised edition, University of Chicago Press, Chicago, 1974. Zbl0296.13001MR0345945
- Kabbaj S., Mahdou N., Trivial extensions of local rings and a conjecture of Costa, Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003, pp. 301–311. Zbl1086.13003MR2029833
- Kabbaj S., Mahdou N., 10.1081/AGB-200027791, Comm. Algebra 32 (2004), no. 10, 3937-3953. Zbl1068.13002MR2097439DOI10.1081/AGB-200027791
- Mahdou N., Mimouni A, Moutui M.A., 10.1080/00927872.2014.897586, Comm. Algebra 43 (2015), no. 1, 297–308. Zbl1315.13035MR3240420DOI10.1080/00927872.2014.897586
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.