Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control
Rajagopal Joice Nirmala; Krishnan Balachandran
Kybernetika (2017)
- Volume: 53, Issue: 1, page 161-178
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJoice Nirmala, Rajagopal, and Balachandran, Krishnan. "Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control." Kybernetika 53.1 (2017): 161-178. <http://eudml.org/doc/287937>.
@article{JoiceNirmala2017,
abstract = {This paper describes the controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Necessary and sufficient conditions for the controllability criteria for linear fractional delay system are established. Further sufficient conditions for the controllability of nonlinear fractional delay integrodifferential system are obtained by using fixed point arguments. Examples are provided to illustrate the results.},
author = {Joice Nirmala, Rajagopal, Balachandran, Krishnan},
journal = {Kybernetika},
keywords = {fractional delay integrodifferential equation; Laplace transform; controllability; Mittag–Leffler function; Caputo fractional derivative},
language = {eng},
number = {1},
pages = {161-178},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control},
url = {http://eudml.org/doc/287937},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Joice Nirmala, Rajagopal
AU - Balachandran, Krishnan
TI - Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 1
SP - 161
EP - 178
AB - This paper describes the controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Necessary and sufficient conditions for the controllability criteria for linear fractional delay system are established. Further sufficient conditions for the controllability of nonlinear fractional delay integrodifferential system are obtained by using fixed point arguments. Examples are provided to illustrate the results.
LA - eng
KW - fractional delay integrodifferential equation; Laplace transform; controllability; Mittag–Leffler function; Caputo fractional derivative
UR - http://eudml.org/doc/287937
ER -
References
top- Bagley, R. L., Torvik, P. J., 10.1122/1.549724, J. Rheol. 27 (1983), 201-210. Zbl0515.76012DOI10.1122/1.549724
- Bagley, R. L., Torvik, P. J., 10.2514/3.9007, AIAA J. 23 (1985), 918-925. Zbl0562.73071DOI10.2514/3.9007
- Balachandran, K., 10.1080/00207178708933892, Int. J. Control. 46 (1987), 193-200. MR0895702DOI10.1080/00207178708933892
- Balachandran, K., Dauer, J. P., 10.1109/tac.1987.1104536, IEEE Trans. Autom. Control. 32(1987), 172-174. Zbl0614.93011MR0872593DOI10.1109/tac.1987.1104536
- Balachandran, K., Kokila, J., Trujillo, J.J., 10.1016/j.camwa.2012.01.071, Comput. Math. Appl. 64 (2012), 3037-3045. Zbl1268.93021MR2989332DOI10.1016/j.camwa.2012.01.071
- Balachandran, K., Zhou, Y., Kokila, J., 10.1016/j.cnsns.2011.12.018, Commun. Nonlinear. Sci. Numer. Simul. 17 (2012), 3508-3520. Zbl1248.93022MR2913988DOI10.1016/j.cnsns.2011.12.018
- Balachandran, K., Zhou, Y., Kokila, J., 10.1016/j.camwa.2011.11.061, Comput. Math. Appl. 64(2012), 3201-3209. MR2989348DOI10.1016/j.camwa.2011.11.061
- Bellman, R., Cooke, K. L., 10.1002/zamm.19650450612, Academic Press, New York 1963. Zbl0163.10501MR0147745DOI10.1002/zamm.19650450612
- Chow, T. S., 10.1016/j.physleta.2005.05.045, Physics Letter A 342 (2005), 148-155. DOI10.1016/j.physleta.2005.05.045
- Dauer, J. P., Gahl, R. D., 10.1007/bf00932544, J. Optimiz. Theory. App. 21 (1977), 59-68. Zbl0325.93007MR0433306DOI10.1007/bf00932544
- Dauer, J. P., 10.1016/0022-247x(76)90191-8, J. Math. Anal. Appl. 54 (1976), 717-725. Zbl0339.93004MR0415473DOI10.1016/0022-247x(76)90191-8
- Halanay, A., 10.1016/s0076-5392(08)x6057-6, Academic Press, New York 1966. Zbl0144.08701MR0216103DOI10.1016/s0076-5392(08)x6057-6
- Hale, J., 10.1007/978-1-4612-9892-2, Springer, New York 1977. Zbl0662.34064MR0508721DOI10.1007/978-1-4612-9892-2
- He, J. H., 10.1016/s0045-7825(98)00108-x, Comput. Methods. Appl. Mech. Eng. 167 (1998), 57-68. Zbl0942.76077MR1665221DOI10.1016/s0045-7825(98)00108-x
- Nirmala, R. Joice, Balachandran, K., 10.5890/dnc.2016.03.007, J. Applied Nonlinear Dynamics 5 (2016), 59-73. MR3577640DOI10.5890/dnc.2016.03.007
- Nirmala, R. Joice, Balachandran, K., Germa, L. R., Trujillo, J. J., 10.1016/s0034-4877(16)30007-6, Rep. Math. Phys. 77 (2016), 87-104. MR3461800DOI10.1016/s0034-4877(16)30007-6
- Kaczorek, T., 10.1007/978-3-642-20502-6, Springer-Verlag, Berlin 2011. MR2798773DOI10.1007/978-3-642-20502-6
- Klamka, J., 10.1080/00207177608932867, Int. J. Control 24(1976), 869-878. MR0424300DOI10.1080/00207177608932867
- Klamka, J., 10.1016/0005-1098(76)90046-7, Automatica 12(1976), 633-634. MR0452869DOI10.1016/0005-1098(76)90046-7
- Kilbas, A., Srivastava, H. M., Trujillo, J. J., Theory and Application of Fractional Differential Equations., Elsevier, Amsterdam 2006. MR2218073
- Machado, J. T., Analysis and design of fractional order digital control systems., Systems Analysis, Modelling and Simulation 27 (1997), 107-122. Zbl0875.93154
- Machado, J. T., Costa, A. C., Quelhas, M. D., 10.1016/j.cnsns.2010.11.007, Commun. Nonlinear. Sci. Numer. Simul. 16 (2011), 2963-2969. Zbl1218.92038DOI10.1016/j.cnsns.2010.11.007
- Magin, R. L, 10.1615/critrevbiomedeng.v32.i1.10, Critical Rev. Biomed. Eng. 32 (2004), 1-377. DOI10.1615/critrevbiomedeng.v32.i1.10
- Mainardi, F., 10.1007/978-3-7091-2664-6_7, In: Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri and F. Mainardi, eds.), Springer-Verlag 1997, pp. 291-348. MR1611587DOI10.1007/978-3-7091-2664-6_7
- Manzanilla, R., Marmol, L. G., Vanegas, C. J., 10.1155/2010/307409, Abstr. Appl. Anal. 2010 (2010), 1-16. MR2660394DOI10.1155/2010/307409
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations., Wiley and Sons, New York 1993. Zbl0789.26002MR1219954
- Mur, T., Henriquez, H. R., 10.3934/mcrf.2015.5.845, Math. Control. Relat. F 5(2015), 845-858. Zbl1332.93061MR3485753DOI10.3934/mcrf.2015.5.845
- Oguztoreli, M. N., 10.1016/s0076-5392(08)x6192-2, Academic Press, New York 1966. Zbl0143.12101MR0217394DOI10.1016/s0076-5392(08)x6192-2
- Oldham, K. B., Spanier, J., 10.1016/s0076-5392(09)x6012-1, Academic Press, New York 1974. MR0361633DOI10.1016/s0076-5392(09)x6012-1
- Ortigueira, M. D., 10.1016/s0165-1684(03)00183-x, Signal Process 83 (2003), 2301-2309. Zbl1145.94367DOI10.1016/s0165-1684(03)00183-x
- Podlubny, I., Fractional Differential Equations., Academic Press, New York 1999. Zbl1160.65308MR1658022
- Podlubny, I., 10.1016/s0076-5392(99)x8001-5, Academic Press, 1999. Zbl0924.34008MR1658022DOI10.1016/s0076-5392(99)x8001-5
- Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro-Machado, 10.1007/978-1-4020-6042-7, Springer-Verlag, New York 2007. Zbl1116.00014MR3184154DOI10.1007/978-1-4020-6042-7
- Schiff, J. L., 10.1007/978-0-387-22757-3, Springer, New York 1999. Zbl0934.44001MR1716143DOI10.1007/978-0-387-22757-3
- Sikora, B., 10.1049/iet-cta.2015.0935, IET Control Theory Appl. 10(2016), 320-327. MR3468656DOI10.1049/iet-cta.2015.0935
- Smith, H., 10.1007/978-1-4419-7646-8, Springer, New York 2011. MR2724792DOI10.1007/978-1-4419-7646-8
- Wei, J., 10.1016/j.camwa.2012.02.065, Comput. Math. Appl. 64 (2012), 3153-3159. Zbl1268.93027MR2989343DOI10.1016/j.camwa.2012.02.065
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.