Interval fuzzy matrix equations

Emília Draženská; Helena Myšková

Kybernetika (2017)

  • Volume: 53, Issue: 1, page 99-112
  • ISSN: 0023-5954

Abstract

top
This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy algebra is the algebraic structure in which the classical addition and multiplication are replaced by maximum and minimum, respectively. The notation 𝐀 X 𝐂 = 𝐁 , where 𝐀 , 𝐁 , 𝐂 are given interval matrices and X is an unknown matrix, represents an interval system of matrix equations. We can define several types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of them. We define the tolerance, weak tolerance, left-weak tolerance, and right-weak tolerance solvability and provide polynomial algorithms for checking them.

How to cite

top

Draženská, Emília, and Myšková, Helena. "Interval fuzzy matrix equations." Kybernetika 53.1 (2017): 99-112. <http://eudml.org/doc/287949>.

@article{Draženská2017,
abstract = {This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy algebra is the algebraic structure in which the classical addition and multiplication are replaced by maximum and minimum, respectively. The notation $\mathbf \{A\} \otimes X\otimes \mathbf \{C\}=\mathbf \{B\}$, where $\mathbf \{A\}, \mathbf \{B\}, \mathbf \{C\}$ are given interval matrices and $X$ is an unknown matrix, represents an interval system of matrix equations. We can define several types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of them. We define the tolerance, weak tolerance, left-weak tolerance, and right-weak tolerance solvability and provide polynomial algorithms for checking them.},
author = {Draženská, Emília, Myšková, Helena},
journal = {Kybernetika},
keywords = {fuzzy algebra; interval matrix equation; tolerance solvability; weak tolerance solvability},
language = {eng},
number = {1},
pages = {99-112},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Interval fuzzy matrix equations},
url = {http://eudml.org/doc/287949},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Draženská, Emília
AU - Myšková, Helena
TI - Interval fuzzy matrix equations
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 1
SP - 99
EP - 112
AB - This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy algebra is the algebraic structure in which the classical addition and multiplication are replaced by maximum and minimum, respectively. The notation $\mathbf {A} \otimes X\otimes \mathbf {C}=\mathbf {B}$, where $\mathbf {A}, \mathbf {B}, \mathbf {C}$ are given interval matrices and $X$ is an unknown matrix, represents an interval system of matrix equations. We can define several types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of them. We define the tolerance, weak tolerance, left-weak tolerance, and right-weak tolerance solvability and provide polynomial algorithms for checking them.
LA - eng
KW - fuzzy algebra; interval matrix equation; tolerance solvability; weak tolerance solvability
UR - http://eudml.org/doc/287949
ER -

References

top
  1. Asse, A., Mangin, P., Witlaeys, D., 10.1109/ifsa-nafips.2013.6608528, NAFIPS 2 Congress, Schenectudy 1983. DOI10.1109/ifsa-nafips.2013.6608528
  2. Butkovič, P., Fiedler, M., Tropical tensor product and beyond., http://web.mat.bham.ac.uk/P.Butkovic/Pubs.html. 
  3. Cechlárová, K., Solutions of interval systems in fuzzy algebra., In: Proc. SOR 2001 (V. Rupnik, L.Zadnik-Stirn, and S. Drobne, eds.), Preddvor, pp. 321-326. 
  4. K.Cechlárová, Cuninghame-Green, R. A., 10.1016/s0024-3795(01)00405-0, Lin. Algebra Appl. 340 (2002), 215-224. Zbl1004.15009MR1869429DOI10.1016/s0024-3795(01)00405-0
  5. Cuninghame-Green, R. A., 10.1007/978-3-642-48708-8, Lecture Notes in Economics and Mathematical Systems 1966, Springer, Berlin 1979. Zbl0739.90073MR0580321DOI10.1007/978-3-642-48708-8
  6. Gavalec, M., Plavka, J., Monotone interval eigenproblem in fuzzy algebra., Kybernetika 46 (2010), 3, 387-396. MR2676076
  7. Kreinovich, J., Lakeyev, A., Rohn, J., Kahl, P., 10.1007/978-1-4757-2793-7, Kluwer, Dordrecht 1998. MR1491092DOI10.1007/978-1-4757-2793-7
  8. Myšková, H., 10.1016/j.laa.2005.02.011, Lin. Algebra Appl. 403 (2005), 263-272. Zbl1129.15003MR2140286DOI10.1016/j.laa.2005.02.011
  9. Myšková, H., 10.1016/j.laa.2005.11.008, Lin. Algebra Appl. 416 (2006), 215-223. Zbl1129.15003MR2242726DOI10.1016/j.laa.2005.11.008
  10. Myšková, H., On an algorithm for testing T4 solvability of fuzzy interval systems., Kybernetika 48 (2012), 5, 924-938. MR3086860
  11. Myšková, H., 10.1016/j.laa.2015.10.031, Lin. Algebra Appl. 492 (2016), 111-127. MR3440152DOI10.1016/j.laa.2015.10.031
  12. Nola, A. Di, Salvatore, S., Pedrycz, W., Sanchez, E., 10.1007/978-94-017-1650-5, Kluwer Academic Publishers, Dordrecht 1989. MR1120025DOI10.1007/978-94-017-1650-5
  13. Plavka, J., 10.1016/j.dam.2011.11.010, Discrete Appl. Math. 160 (2012), 640-647. MR2876347DOI10.1016/j.dam.2011.11.010
  14. Rohn, J., Systems of Interval Linear Equations and Inequalities (Rectangular Case)., Technical Report 875, Institute of Computer Science, Academy of Sciences of the Czech Republic, Praha 2002. MR2002910
  15. Rohn, J., 10.1023/a:1009987227018, Reliable Computing 3 (1997), 315-323. Zbl0888.65052MR1616269DOI10.1023/a:1009987227018
  16. Sanchez, E., Medical diagnosis and composite relations., In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, eds.), North-Holland, Amsterdam-New York 1979, pp. 437-444. MR0558737
  17. Terano, T., Tsukamoto, Y., 10.1109/cdc.1977.271521, In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395. DOI10.1109/cdc.1977.271521
  18. Zadeh, L. A., Toward a theory of fuzzy systems., In: Aspects of Network and Systems Theory (R. E. Kalman and N. De Claris, eds.), Hold, Rinehart and Winston, New York 1971, pp. 209-245. 
  19. Zimmermann, K., Extremální algebra., Ekonomicko-matematická laboratoř Ekonomického ústavu ČSAV, Praha 1976. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.