New technique for solving univariate global optimization

Djamel Aaid; Amel Noui; Mohand Ouanes

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 1, page 19-33
  • ISSN: 0044-8753

Abstract

top
In this paper, a new global optimization method is proposed for an optimization problem with twice differentiable objective function a single variable with box constraint. The method employs a difference of linear interpolant of the objective and a concave function, where the former is a continuous piecewise convex quadratic function underestimator. The main objectives of this research are to determine the value of the lower bound that does not need an iterative local optimizer. The proposed method is proven to have a finite convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering methods.

How to cite

top

Aaid, Djamel, Noui, Amel, and Ouanes, Mohand. "New technique for solving univariate global optimization." Archivum Mathematicum 053.1 (2017): 19-33. <http://eudml.org/doc/287965>.

@article{Aaid2017,
abstract = {In this paper, a new global optimization method is proposed for an optimization problem with twice differentiable objective function a single variable with box constraint. The method employs a difference of linear interpolant of the objective and a concave function, where the former is a continuous piecewise convex quadratic function underestimator. The main objectives of this research are to determine the value of the lower bound that does not need an iterative local optimizer. The proposed method is proven to have a finite convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering methods.},
author = {Aaid, Djamel, Noui, Amel, Ouanes, Mohand},
journal = {Archivum Mathematicum},
keywords = {global optimization; Branch and Bound method; convex underestimation; piecewise quadratic; explicit solution},
language = {eng},
number = {1},
pages = {19-33},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {New technique for solving univariate global optimization},
url = {http://eudml.org/doc/287965},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Aaid, Djamel
AU - Noui, Amel
AU - Ouanes, Mohand
TI - New technique for solving univariate global optimization
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 1
SP - 19
EP - 33
AB - In this paper, a new global optimization method is proposed for an optimization problem with twice differentiable objective function a single variable with box constraint. The method employs a difference of linear interpolant of the objective and a concave function, where the former is a continuous piecewise convex quadratic function underestimator. The main objectives of this research are to determine the value of the lower bound that does not need an iterative local optimizer. The proposed method is proven to have a finite convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering methods.
LA - eng
KW - global optimization; Branch and Bound method; convex underestimation; piecewise quadratic; explicit solution
UR - http://eudml.org/doc/287965
ER -

References

top
  1. Aaid, D., Étude numérique comparative entre des méthodes de résolution d’un problème de transport à quatre indices avec capacités, Thése de l'université de Constantine (2010), http://bu.umc.edu.dz/theses/math/AAI5587.pdf. (2010) 
  2. Aaid, D., Noui, A., Le Thi, H.A., Zidna, A., A modified classical algorithm ALPT4C for solving a capacitated four-index transportation problem, Acta Math. Vietnam. 37 (3) (2012), 379–390. (2012) Zbl1297.90081MR3027228
  3. Aaid, D., Noui, A., Ouanes, M., Piecewise quadratic underestimation for global optimization, JSLAROMAD II Tiziouzou. Algeria, 28 – 30 Octobre 2013 (2013). (2013) 
  4. Aaid, D., Noui, A., Zidna, A., Ouanes, M., A quadratic branch and bound with Alienor method for global optimization, MAGO'2014, Málaga, Spain, 1 – 4 September, 2014. (2014) 
  5. Adjiman, C.S., Androulakis, I.P., Floudas, C.A., 10.1016/S0098-1354(98)00218-X, Internat. J. Comput. Appl. in Chem. Engrg. 29 (3) (1998), 1159–1179. (1998) MR1365800DOI10.1016/S0098-1354(98)00218-X
  6. Akrotirianakis, I.G., Floudas, C.A., 10.1023/B:JOGO.0000044768.75992.10, J. Global Optim. 29 (3) (2004), 249–264. (2004) Zbl1133.90420MR2109552DOI10.1023/B:JOGO.0000044768.75992.10
  7. Bendiab, O., Cherruault, Y., 10.1016/0020-7101(94)01039-4, Int. J. Biomed. Comput. 38 (1) (1995), 71–73. (1995) DOI10.1016/0020-7101(94)01039-4
  8. Benneouala, T., Cherruault, Y., 10.1108/03684920510605911, Kybernetes 34 (7–8) (2005), 1104–1111. (2005) Zbl1130.90397DOI10.1108/03684920510605911
  9. Caratzoulas, S., Floudas, C.A., 10.1007/s10957-004-0940-2, J. Optim. Theory Appl. 124 (2) (2005), 336–362. (2005) MR2130074DOI10.1007/s10957-004-0940-2
  10. Cartis, C., Fowkes, J.M., Gould, N.I.M., 10.1007/s10898-014-0199-6, J. Global Optim. 61 (3) (2015), 429–457. (2015) Zbl1318.90057MR3313179DOI10.1007/s10898-014-0199-6
  11. Cherruault, Y., Mora, G., Optimisation globale : théorie des courbes alpha-denses, Economica Paris, 2005. (2005) 
  12. Chrysanthos, E., Gounaris, C., Floudas, A., Tight convex underestimators for C 2 -continuous problems. I. Univariate functions, J. Global Optim. 42 (1) (2008). (2008) MR2425310
  13. Grosan, C., Abraham, A., On a class of global optimization test functions, Neural Network World, http://falklands.globat.com/~softcomputing.net/nnw2009.pdf. 
  14. Guettal, D., Ziadi, A., Reducing transformation and global optimization., Appl. Math. Comput. 218 (2012), 5848–5860. (2012) Zbl1256.65054MR2873062
  15. Guillez, A., 10.1016/0895-7177(90)90184-O, Math. Comput. Modelling 14 (1990), 245–247. (1990) Zbl0725.90046DOI10.1016/0895-7177(90)90184-O
  16. Horst, R., Pardalos, P.M., Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht, 1995. (1995) Zbl0805.00009MR1377081
  17. Kvasov, D.E, Sergeyev, Y.D., 10.1007/s11590-008-0110-9, Optim. Lett. 3 (2) (2009), 303–318. (2009) Zbl1173.90544MR2472191DOI10.1007/s11590-008-0110-9
  18. Le Thi, H.A., Ouanes, M., 10.1051/ro:2006024, RAIRO Oper. Res. 40 (2006), 285–302. (2006) Zbl1180.90249MR2276160DOI10.1051/ro:2006024
  19. Lera, D., Sergeyev, Y.D., 10.1137/110859129, SIAM J. Optim. 23 (1) (2013), 508–529. (2013) Zbl1270.90049MR3033117DOI10.1137/110859129
  20. Leslous, F., Marthon, P., Oukacha, B., Ouanes, M., 10.1016/j.joems..08.002, J. Egyptian Math. Soc. (2015). DOI: http://dx.doi.org/10.1016/j.joems..08.002 (2015) DOI10.1016/j.joems..08.002
  21. Noui, A., Aaid, D., Ouanes, M., An efficient algorithm for the Bernstein polynomial approach to global optimization, JSLAROMAD II, Tiziouzou, Algeria, 2013, 28–30 Octobre 2013. (2013) 
  22. Ouanes, M., A combined descent gradient method and descritization method for convex SIP, Internat. J. Appl. Math. 25 (4) (2012), 503–513. (2012) MR3113955
  23. Ouanes, M., A new approach for nonconvex SIP, Internat. J. Appl. Math. 81 (3) (2012), 479–486. (2012) Zbl1259.65093
  24. Ouanes, M., The main diagonal method in C 1 global optimization problem, Internat. J. Appl. Math. 25 (5) (2012), 663–672. (2012) Zbl1277.65047MR3086787
  25. Ouanes, M., 10.12732/ijpam.v84i1.5, Internat. J. of Pure and Appl. Math. 84 (1) (2013), 73–83. (2013) DOI10.12732/ijpam.v84i1.5
  26. Ouanes, M., Le Thi, H.A., Trong, P.N., Zidna, A., 10.1016/j.matcom.2014.04.013, Math. Comput. Simulation 109 (2015), 197–211. (2015) MR3282082DOI10.1016/j.matcom.2014.04.013
  27. Pardalos, P.M., Romeijn, H.E., Handbook of Global Optimization, Volume 2. Nonconvex Optimization and Its Applications, Springer, Boston–Dordrecht–London, 2002. (2002) MR1919528
  28. Piyavskii, S.A., 10.1016/0041-5553(72)90115-2, USSR Computational Mathematics and Mathematical Physics 12 (4) (1972), 57–67. (1972) MR0317544DOI10.1016/0041-5553(72)90115-2
  29. Rahal, M., Ziadi, A., A new extention of Piyavski’s method to holder functions of sveral variables, Appl. Math. Comput. 218 (2012), 478–488. (2012) MR2400670
  30. Sergeyev, Y.D., A one-dimensional deterministic global minimization algorithm, Comput. Math. Math. Phys. 35 (5) (1995), 705–717. (1995) MR1337015
  31. Sergeyev, Y.D., 10.1007/BF01584848, Math. Programming 81 (1), Ser. A (1998), 127–146. (1998) Zbl0920.90133MR1617756DOI10.1007/BF01584848
  32. Shpak, A., Global optimization in one-dimensional case using analytically defined derivatives of objective function, Comput. Sci. J. Moldova 3 (8) (1995), 168–184. (1995) Zbl0896.65046MR1485351

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.