Generalized Kählerian manifolds and transformation of generalized contact structures

Habib Bouzir; Gherici Beldjilali; Mohamed Belkhelfa; Aissa Wade

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 1, page 35-48
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is two-fold. First, new generalized Kähler manifolds are constructed starting from both classical almost contact metric and almost Kählerian manifolds. Second, the transformation construction on classical Riemannian manifolds is extended to the generalized geometry setting.

How to cite

top

Bouzir, Habib, et al. "Generalized Kählerian manifolds and transformation of generalized contact structures." Archivum Mathematicum 053.1 (2017): 35-48. <http://eudml.org/doc/287966>.

@article{Bouzir2017,
abstract = {The aim of this paper is two-fold. First, new generalized Kähler manifolds are constructed starting from both classical almost contact metric and almost Kählerian manifolds. Second, the transformation construction on classical Riemannian manifolds is extended to the generalized geometry setting.},
author = {Bouzir, Habib, Beldjilali, Gherici, Belkhelfa, Mohamed, Wade, Aissa},
journal = {Archivum Mathematicum},
keywords = {product manifolds; trans-Sasakian manifolds; generalized Kählerian manifolds; generalized contact structures; transformation of generalized almost contact structures; generalized almost complex structures},
language = {eng},
number = {1},
pages = {35-48},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Generalized Kählerian manifolds and transformation of generalized contact structures},
url = {http://eudml.org/doc/287966},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Bouzir, Habib
AU - Beldjilali, Gherici
AU - Belkhelfa, Mohamed
AU - Wade, Aissa
TI - Generalized Kählerian manifolds and transformation of generalized contact structures
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 1
SP - 35
EP - 48
AB - The aim of this paper is two-fold. First, new generalized Kähler manifolds are constructed starting from both classical almost contact metric and almost Kählerian manifolds. Second, the transformation construction on classical Riemannian manifolds is extended to the generalized geometry setting.
LA - eng
KW - product manifolds; trans-Sasakian manifolds; generalized Kählerian manifolds; generalized contact structures; transformation of generalized almost contact structures; generalized almost complex structures
UR - http://eudml.org/doc/287966
ER -

References

top
  1. Apostolov, V., Gualtieri, M., 10.1007/s00220-007-0196-4, Comm. Math. Phys. 2 (2007), 561–575. (2007) Zbl1135.53018MR2287917DOI10.1007/s00220-007-0196-4
  2. Beem, J.K., Ehrlich, P.E., Powell, Th.G., Warped product manifolds in relativity, Selected studies: physics-astrophysics, mathematics, history of science, North-Holland, Amsterdam-New York, 1982, pp. 41–56. (1982) Zbl0491.53047MR0662851
  3. Beldjilali, G., Belkhelfa, M., Kählerian structures and 𝒟 -homothetic Bi-warping, J. Geom. Symmetry Phys. 42 (2016), 1–13. (2016) MR3586441
  4. Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, vol. 509, Springer, 1976, pp. 17–35. (1976) Zbl0319.53026MR0467588
  5. Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, vol. 203, Birkhäuser Boston, 2002. (2002) Zbl1011.53001MR1874240
  6. Blair, D.E., 10.2298/PIM1308047B, Publ. Inst. Math. (Beograd) (N.S.) 94 (108) (2013), 47–54. (2013) MR3137489DOI10.2298/PIM1308047B
  7. Blair, D.E., Oubiña, J.A., 10.5565/PUBLMAT_34190_15, Publ. Mat. 34 (1) (1990), 199–207. (1990) Zbl0721.53035MR1059874DOI10.5565/PUBLMAT_34190_15
  8. Boyer, C.P., Galicki, K., Matzeu, P., 10.1007/s00220-005-1459-6, Comm. Math. Phys. 262 (2006), 177–208. (2006) Zbl1103.53022MR2200887DOI10.1007/s00220-005-1459-6
  9. Bursztyn, H., Cavalcanti, G.R., Gualtieri, M., 10.1016/j.aim.2006.09.008, Adv. Math. 211 (2) (2007), 726–765. (2007) Zbl1115.53056MR2323543DOI10.1016/j.aim.2006.09.008
  10. Bursztyn, H., Cavalcanti, G.R., Gualtieri, M., 10.1090/conm/450/08734, Contemp. Math. 450 (2008), 61–77. (2008) MR2397619DOI10.1090/conm/450/08734
  11. Gates, S.J., Jr.,, Hull, C.M., Rocek, M., Twisted multiplets and new supersymmetric nonlinear sigma models, Nuclear Phys. B248 (1984), 157–186. (1984) MR0776369
  12. Goto, R., 10.4310/jdg/1279114300, J. Differential Geom. 84 (2010), 525–560. (2010) MR2669364DOI10.4310/jdg/1279114300
  13. Goto, R., 10.1016/j.aim.2012.05.004, Adv. Math. 231 (2012), 1041–1067. (2012) Zbl1252.53095MR2955201DOI10.1016/j.aim.2012.05.004
  14. Gualtieri, M., Generalized complex geometry, Ph.D. thesis, University of Oxford, 2004, http://arxiv.org/abs/arXiv:math/0401221v1. (2004) MR2811595
  15. Hitchin, N., 10.1007/s00220-006-1530-y, Comm. Math. Phys. 265 (1) (2006), 131–164. (2006) Zbl1110.53056MR2217300DOI10.1007/s00220-006-1530-y
  16. Hitchin, N., 10.4310/JSG.2007.v5.n1.a2, J. Symplectic Geom. 5 (1) (2007), 1–8. (2007) MR2371181DOI10.4310/JSG.2007.v5.n1.a2
  17. Kenmotsu, K., 10.2748/tmj/1178241594, Tôhoku Math. J. 24 (1972), 93–103. (1972) Zbl0245.53040MR0319102DOI10.2748/tmj/1178241594
  18. Lin, Y., Tolman, S., 10.1007/s00220-006-0096-z, Comm. Math. Phys. (2006), 199–222. (2006) Zbl1120.53049MR2249799DOI10.1007/s00220-006-0096-z
  19. Marrero, J.C., 10.1007/BF01760000, Ann. Mat. Pura Appl. (4) 162 (1) (1992), 77–86. (1992) Zbl0772.53036MR1199647DOI10.1007/BF01760000
  20. Olszak, Z., 10.4064/ap-47-1-41-50, Ann. Polon. Math. (1986), 41–50. (1986) Zbl0605.53018MR0859423DOI10.4064/ap-47-1-41-50
  21. Oubiña, J.A., New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187–193. (1985) Zbl0611.53032MR0834769
  22. Poon, Y.S., Wade, A., 10.1112/jlms/jdq069, J. London Math. Soc. 83 (2) (2011), 333–352. (2011) Zbl1226.53078MR2776640DOI10.1112/jlms/jdq069
  23. Sekiya, K., Generalized almost contact structures and generalized Sasakian structures, Osaka J. Math. 52 (2015), 303–306. (2015) Zbl1325.53107MR3326601
  24. Tanno, S., The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700–717. (1968) Zbl0165.24703MR0234486
  25. Tanno, S., 10.2748/tmj/1178243031, Tôhoku Math. J. 21 (1969), 21–38. (1969) Zbl1168.51302MR0242094DOI10.2748/tmj/1178243031
  26. Vaisman, I., From generalized Kähler to generalized Sasakian structure, J. Geom. Symmetry Phyd. 18 (2010), 63–86. (2010) MR2668883
  27. Yano, K., Kon, M., Structures on manifolds, Series in Pure Math., vol. 3, World Scientific, 1984. (1984) Zbl0557.53001MR0794310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.