Isotropic almost complex structures and harmonic unit vector fields
Archivum Mathematicum (2018)
- Volume: 054, Issue: 1, page 15-32
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBaghban, Amir, and Abedi, Esmaeil. "Isotropic almost complex structures and harmonic unit vector fields." Archivum Mathematicum 054.1 (2018): 15-32. <http://eudml.org/doc/294268>.
@article{Baghban2018,
abstract = {Isotropic almost complex structures $J_\{\delta , \sigma \}$ define a class of Riemannian metrics $g_\{\delta , \sigma \}$ on tangent bundles of Riemannian manifolds which are a generalization of the Sasaki metric. In this paper, some results will be obtained on the integrability of these almost complex structures and the notion of a harmonic unit vector field will be introduced with respect to the metrics $g_\{\delta , 0\}$. Furthermore, the necessary and sufficient conditions for a unit vector field to be a harmonic unit vector field will be obtained.},
author = {Baghban, Amir, Abedi, Esmaeil},
journal = {Archivum Mathematicum},
keywords = {complex structures; energy functional; isotropic almost complex structure; unit tangent bundle; variational problem; tension field},
language = {eng},
number = {1},
pages = {15-32},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Isotropic almost complex structures and harmonic unit vector fields},
url = {http://eudml.org/doc/294268},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Baghban, Amir
AU - Abedi, Esmaeil
TI - Isotropic almost complex structures and harmonic unit vector fields
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 1
SP - 15
EP - 32
AB - Isotropic almost complex structures $J_{\delta , \sigma }$ define a class of Riemannian metrics $g_{\delta , \sigma }$ on tangent bundles of Riemannian manifolds which are a generalization of the Sasaki metric. In this paper, some results will be obtained on the integrability of these almost complex structures and the notion of a harmonic unit vector field will be introduced with respect to the metrics $g_{\delta , 0}$. Furthermore, the necessary and sufficient conditions for a unit vector field to be a harmonic unit vector field will be obtained.
LA - eng
KW - complex structures; energy functional; isotropic almost complex structure; unit tangent bundle; variational problem; tension field
UR - http://eudml.org/doc/294268
ER -
References
top- Abbassi, M.T.K., Calvaruso, G., Perrone, D., 10.1016/j.difgeo.2008.06.016, Differential Geom. Appl. 27 (2009), 157–169. (2009) MR2488999DOI10.1016/j.difgeo.2008.06.016
- Abbassi, M.T.K., Calvaruso, G., Perrone, D., 10.1093/qmath/hap040, Quart. J. Math. 62 (2011), 259–288. (2011) MR2805204DOI10.1093/qmath/hap040
- Abbassi, M.T.K., Sarih, M., On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22 (2005), 19–47. (2005) MR2106375
- Aguilar, R.M., 10.1007/BF02568316, Manuscripta Math. 90 (1996), 429–436. (1996) MR1403714DOI10.1007/BF02568316
- Baghban, A., Abedi, E., On the harmonic vector fields, th Seminar on Geometry and Topology, Amirkabir University of Technology, 2015. (2015)
- Bouzir, H., Beldjilali, G., Belkhelfa, M., Wade, A., 10.5817/AM2017-1-35, Arch. Math. (Brno) 53 (2017), 35–48. (2017) MR3636680DOI10.5817/AM2017-1-35
- Calvaruso, G., 10.1016/j.geomphys.2010.11.001, J. Geom. Phys. 61 (2011), 498–515. (2011) MR2746133DOI10.1016/j.geomphys.2010.11.001
- Calvaruso, G., 10.2478/s11533-011-0109-9, Central Eur. J. Math. 10 (2012), 411–425. (2012) MR2886549DOI10.2478/s11533-011-0109-9
- Dragomir, S., Perrone, D., Harmonic vector fields, Variational Principles and Differential Geometry, Elsevier, 2012. (2012) MR3286434
- Friswell, R.M., Harmonic vector fields on pseudo-Riemannian manifolds, Ph.D. thesis, 2014. (2014)
- Friswell, R.M., Wood, C.M., 10.1016/j.geomphys.2016.10.015, J. Geom. Phys. 112 (2017), 45–58. (2017) MR3588756DOI10.1016/j.geomphys.2016.10.015
- Gil-Medrano, O., 10.1016/S0926-2245(01)00053-5, Differential Geom. Appl. 15 (2001), 137–152. (2001) MR1857559DOI10.1016/S0926-2245(01)00053-5
- Sasaki, S., 10.2748/tmj/1178244668, Tôhoku Math. J. 10, 338–354. MR0112152DOI10.2748/tmj/1178244668
- Urakawa, H., Calculus of variations and harmonic maps, American Mathematical Society, 1993. (1993) MR1252178
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.