Solution to the optimality equation in a class of Markov decision chains with the average cost criterion
Kybernetika (1991)
- Volume: 27, Issue: 1, page 23-37
- ISSN: 0023-5954
Access Full Article
topHow to cite
topCavazos-Cadena, Rolando. "Solution to the optimality equation in a class of Markov decision chains with the average cost criterion." Kybernetika 27.1 (1991): 23-37. <http://eudml.org/doc/28811>.
@article{Cavazos1991,
author = {Cavazos-Cadena, Rolando},
journal = {Kybernetika},
keywords = {denumerable state space; discrete time parameter; stationary policy},
language = {eng},
number = {1},
pages = {23-37},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solution to the optimality equation in a class of Markov decision chains with the average cost criterion},
url = {http://eudml.org/doc/28811},
volume = {27},
year = {1991},
}
TY - JOUR
AU - Cavazos-Cadena, Rolando
TI - Solution to the optimality equation in a class of Markov decision chains with the average cost criterion
JO - Kybernetika
PY - 1991
PB - Institute of Information Theory and Automation AS CR
VL - 27
IS - 1
SP - 23
EP - 37
LA - eng
KW - denumerable state space; discrete time parameter; stationary policy
UR - http://eudml.org/doc/28811
ER -
References
top- R. B. Ash, Real Analysis and Probability, Academic Press, New York 1972. (1972) MR0435320
- J. S. Baras D.-J. Ma, A. M. Makowski, K competing queues with geometric service requirements and linear costs: The fie rule is always optimal, Systems Control Lett. 6(1985), 3, 173-180. (1985) MR0801867
- P. Biliingsley, Convergence of Probability Measures, Wiley, New York 1968. (1968) MR0233396
- V. S. Borkar, On minimum cost per unit of time control of Markov chains, SIAM J. Control Optim. 22 (1984), 6, 965-978. (1984) MR0762632
- R. Cavazos-Cadena, Weak conditions for the existence of optimal stationary policies in average Markov decision chains with unbounded costs, Kybernetika 25 (1989), 3, 145- 156. (1989) Zbl0673.90092MR1010178
- R. Cavazos-Cadena, L. I. Sennott, Comparing recent assumptions for the existence of average optimal stationary policies (submitted for publication)
- K. Hinderer, Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter, Springer-Verlag, Berlin-Heidelberg-New York 1970. (1970) Zbl0202.18401MR0267890
- M. Loeve, Probability Theory I, Springer-Verlag, New York-Berlin -Heidelberg 1977. (1977) Zbl0359.60001MR0651017
- J. Munkres, Topology, a First Course, Prentice-Hall, Englewood Cliffs, New Jersey 1975. (1975) Zbl0306.54001MR0464128
- P. Nain, K. W. Ross, Optimal priority assignment with hard constraints, IEEE Trans. Automat. Control 5/(1986), 10, 883-888. (1986) MR0855542
- S. M. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Francisco, California 1970. (1970) Zbl0213.19101MR0264792
- L. I. Sennot, A new condition for the existence of optimal stationary policies in average cost Markov decision processes, Oper. Res. Lett. 5 (1986), 17 - 23. (1986) MR0845763
- L. I. Sennot, A new condition for the existence of optimum stationary policies in average cost Markov decision processes - unbounded cost case, Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece 1986, pp. 1719-1721. (1986)
- L. C Thomas, Connectedness conditions for denumerable state Markov decision processes, In: Recent Developments in Markov Decision Processes (R. Hartley, L. C. Thomas and D. J. White, eds.), Academic Press, New York 1980, pp. 181 - 204. (1980)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.