On non-Hopfian groups of fractions

Olga Macedońska

Open Mathematics (2017)

  • Volume: 15, Issue: 1, page 398-403
  • ISSN: 2391-5455

Abstract

top
The group of fractions of a semigroup S, if exists, can be written as G = SS−1. If S is abelian, then G must be abelian. We say that a semigroup identity is transferable if being satisfied in S it must be satisfied in G = SS−1. One of problems posed by G.Bergman in 1981 asks whether the group G must satisfy every semigroup identity which is satisfied in S, that is whether every semigroup identity is transferable. The first non-transferable identities were constructed in 2005 by S.V.Ivanov and A.M. Storozhev. A group G is called Hopfian if each epimorphizm G → G is the automorphism. The residually finite groups are Hopfian, however there are many problems concerning the Hopfian property e.g. of infinite Burnside groups, of finitely generated relatively free groups [11, Problem 15]. We prove here that if G = SS−1 is an n-generator group of fractions of a relatively free semigroup S, satisfying m-variable (m < n) non-transferable identity, then G is the non-Hopfian group.

How to cite

top

Olga Macedońska. "On non-Hopfian groups of fractions." Open Mathematics 15.1 (2017): 398-403. <http://eudml.org/doc/288121>.

@article{OlgaMacedońska2017,
abstract = {The group of fractions of a semigroup S, if exists, can be written as G = SS−1. If S is abelian, then G must be abelian. We say that a semigroup identity is transferable if being satisfied in S it must be satisfied in G = SS−1. One of problems posed by G.Bergman in 1981 asks whether the group G must satisfy every semigroup identity which is satisfied in S, that is whether every semigroup identity is transferable. The first non-transferable identities were constructed in 2005 by S.V.Ivanov and A.M. Storozhev. A group G is called Hopfian if each epimorphizm G → G is the automorphism. The residually finite groups are Hopfian, however there are many problems concerning the Hopfian property e.g. of infinite Burnside groups, of finitely generated relatively free groups [11, Problem 15]. We prove here that if G = SS−1 is an n-generator group of fractions of a relatively free semigroup S, satisfying m-variable (m < n) non-transferable identity, then G is the non-Hopfian group.},
author = {Olga Macedońska},
journal = {Open Mathematics},
keywords = {Positive law; Hopfian group; positive law},
language = {eng},
number = {1},
pages = {398-403},
title = {On non-Hopfian groups of fractions},
url = {http://eudml.org/doc/288121},
volume = {15},
year = {2017},
}

TY - JOUR
AU - Olga Macedońska
TI - On non-Hopfian groups of fractions
JO - Open Mathematics
PY - 2017
VL - 15
IS - 1
SP - 398
EP - 403
AB - The group of fractions of a semigroup S, if exists, can be written as G = SS−1. If S is abelian, then G must be abelian. We say that a semigroup identity is transferable if being satisfied in S it must be satisfied in G = SS−1. One of problems posed by G.Bergman in 1981 asks whether the group G must satisfy every semigroup identity which is satisfied in S, that is whether every semigroup identity is transferable. The first non-transferable identities were constructed in 2005 by S.V.Ivanov and A.M. Storozhev. A group G is called Hopfian if each epimorphizm G → G is the automorphism. The residually finite groups are Hopfian, however there are many problems concerning the Hopfian property e.g. of infinite Burnside groups, of finitely generated relatively free groups [11, Problem 15]. We prove here that if G = SS−1 is an n-generator group of fractions of a relatively free semigroup S, satisfying m-variable (m < n) non-transferable identity, then G is the non-Hopfian group.
LA - eng
KW - Positive law; Hopfian group; positive law
UR - http://eudml.org/doc/288121
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.