Cone-type constrained relative controllability of semilinear fractional systems with delays
Kybernetika (2017)
- Volume: 53, Issue: 2, page 370-381
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSikora, Beata, and Klamka, Jerzy. "Cone-type constrained relative controllability of semilinear fractional systems with delays." Kybernetika 53.2 (2017): 370-381. <http://eudml.org/doc/288175>.
@article{Sikora2017,
abstract = {The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function $f$. The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered. The results are illustrated by an example.},
author = {Sikora, Beata, Klamka, Jerzy},
journal = {Kybernetika},
keywords = {the Caputo derivative; semilinear fractional systems; relative controllability; delays in control; constraints},
language = {eng},
number = {2},
pages = {370-381},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Cone-type constrained relative controllability of semilinear fractional systems with delays},
url = {http://eudml.org/doc/288175},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Sikora, Beata
AU - Klamka, Jerzy
TI - Cone-type constrained relative controllability of semilinear fractional systems with delays
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 2
SP - 370
EP - 381
AB - The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function $f$. The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered. The results are illustrated by an example.
LA - eng
KW - the Caputo derivative; semilinear fractional systems; relative controllability; delays in control; constraints
UR - http://eudml.org/doc/288175
ER -
References
top- Ahmed, E., Hashis, A. H., Rihan, F. A., On fractional order cancer model., J. Fractional Calculus Appl. 3 (2012), 1-6. MR1330571
- Babiarz, A., Niezabitowski, M., 10.1155/2017/4715861, Math. Problems Engrg., ID 4715861 (2017), 15 pages. MR3603402DOI10.1155/2017/4715861
- Balachandran, K., Kokila, J., Trujillo, J. J., 10.1016/j.camwa.2012.01.071, Comp. Math. Apll. 64 (2012), 3037-3045. Zbl1268.93021MR2989332DOI10.1016/j.camwa.2012.01.071
- Balachandran, K., Zhou, Y., Kokila, J., 10.1016/j.cnsns.2011.12.018, Commun. Nonlinear. Sci. Numer. Simulat. 17 (2012), 3508-3520. Zbl1248.93022MR2913988DOI10.1016/j.cnsns.2011.12.018
- Balachandran, K., Zhou, Y., Kokila, J., 10.1016/j.camwa.2011.11.061, Comp. Math. Apll. 64 (2012), 3201-3206. MR2989348DOI10.1016/j.camwa.2011.11.061
- Balachandran, K., 10.1007/978-3-319-45474-0_29, Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332. DOI10.1007/978-3-319-45474-0_29
- Bodnar, M., Piotrowska, J., Delay differential equations: theory and applications., Matematyka Stosowana 11 (2011), 17-56 (in Polish). MR2755711
- Haque, M. A., 10.1016/j.mbs.2011.07.003, Adv. Apll. Math. Biosciences 2 (2011), 1-16. DOI10.1016/j.mbs.2011.07.003
- He, X., 10.1006/jmaa.1996.0087, J. Math. Anal. Appl. 198 (1996), 355-370. Zbl0952.34061MR1376269DOI10.1006/jmaa.1996.0087
- Kaczorek, T., 10.1007/978-3-642-20502-6, Lect. Notes Control Inform. Sci. 411 2011. Zbl1221.93002MR2798773DOI10.1007/978-3-642-20502-6
- Kaczorek, T., Rogowski, K., 10.1007/978-3-319-11361-6, Studies in Systems, Decision and Control 13 2015. Zbl1354.93001MR3497539DOI10.1007/978-3-319-11361-6
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations., North-Holland Mathematics Studies 204 2006. Zbl1092.45003MR2218073
- Klamka, J., Controllability of Dynamical Systems., Kluwer Academic Publishers, 1991. Zbl0818.93002MR1134783
- Klamka, J., Constrained controllability of semilinear systems with delayed controls., Bull. Polish Academy of Sciences: Technical Sciences 56 (2008), 333-337.
- Klamka, J., Sikora, B., 10.1007/978-3-319-45474-0_30, Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344. DOI10.1007/978-3-319-45474-0_30
- Krishnaveni, K., Kannan, K., Balachandar, S. R., Approximate analytical solution for fractional population growth model., Int. J. Engrg. Technol. 5 (2013), 2832-2836.
- Machado, J. T., Costa, A. C., Quelhas, M. D., 10.1016/j.cnsns.2010.11.007, Comm. Nonlinear Sciences and Numerical Simulation 16 (2011), 2963-2969. Zbl1218.92038DOI10.1016/j.cnsns.2010.11.007
- Malinowska, A. B., Odziejewicz, T., Schmeidel, E., 10.1007/978-3-319-45474-0_21, Lect. Notes Electr. Engrg., Theory and Applications of Non-integer Order Systems 407 (2016), 227-240. DOI10.1007/978-3-319-45474-0_21
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Calculus., Villey 1993. MR1219954
- Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V., 10.1007/978-1-84996-335-0, Springer-Verlag 2010. MR3012798DOI10.1007/978-1-84996-335-0
- Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J., 10.1016/s0034-4877(16)30007-6, Rep. Math. Physics 77 (2016), 87-104. MR3461800DOI10.1016/s0034-4877(16)30007-6
- Oldham, K. B., Spanier, J., The Fractional Calculus., Academic Press 1974. Zbl0292.26011MR0361633
- Podlubny, I., 10.1016/s0034-4877(16)30007-6, In: Mathematics in Science and Engineering, Academic Press 1999. Zbl0924.34008MR1658022DOI10.1016/s0034-4877(16)30007-6
- Robinson, S. M., 10.1137/0713043, SIAM J. Numerical Analysis 13 (1976), 497-513. MR0410522DOI10.1137/0713043
- Sabatier, J., Agrawal, O. P., Machado, J. A. Tenreiro, 10.1007/978-1-4020-6042-7, In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007. MR3184154DOI10.1007/978-1-4020-6042-7
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications., Gordan and Breach Science Publishers 1993. Zbl0818.26003MR1347689
- Sikora, B., 10.1049/iet-cta.2015.0935, IET Control Theory Appl. 10 (2016), 320-327. MR3468656DOI10.1049/iet-cta.2015.0935
- Sikora, B., 10.1515/amcs-2016-0036, Int. J. Applied Math. Computer Sci. 26 (2016), 521-531. Zbl1347.93057MR3560625DOI10.1515/amcs-2016-0036
- Srivastava, V. K., Kumar, S., Awasthi, M., Singh, B. K., 10.1016/j.ejbas.2014.03.001, Egyptian J. Basic Appl. Sci. 1 (2014), 71-76. DOI10.1016/j.ejbas.2014.03.001
- Wei, J., 10.1016/j.camwa.2012.02.065, Comput. Math. Appl. 64 (2012), 3153-3159. Zbl1268.93027MR2989343DOI10.1016/j.camwa.2012.02.065
- Zduniak, B., Bodnar, M., Foryś, U., 10.2478/amcs-2014-0063, Int. J. Appl. Math. Computer Sci. 24 (2014), 853-863. Zbl1309.93076MR3309453DOI10.2478/amcs-2014-0063
- Zhang, H., Cao, J., Jiang, W., 10.1155/2013/146010, J. Appl. Math., ID146010 (2013) 9 pages. Zbl1271.93028MR3064923DOI10.1155/2013/146010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.