On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays

Beata Sikora

Kybernetika (2019)

  • Volume: 55, Issue: 4, page 675-689
  • ISSN: 0023-5954

Abstract

top
The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function f . The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time t > 0 is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study.

How to cite

top

Sikora, Beata. "On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays." Kybernetika 55.4 (2019): 675-689. <http://eudml.org/doc/295056>.

@article{Sikora2019,
abstract = {The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function $f$. The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time $t>0$ is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study.},
author = {Sikora, Beata},
journal = {Kybernetika},
keywords = {fractional systems; semilinear control systems; Rothe's fixed point theorem; delays in control; pseudo-transition matrix; the Caputo derivative},
language = {eng},
number = {4},
pages = {675-689},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays},
url = {http://eudml.org/doc/295056},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Sikora, Beata
TI - On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 4
SP - 675
EP - 689
AB - The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function $f$. The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time $t>0$ is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study.
LA - eng
KW - fractional systems; semilinear control systems; Rothe's fixed point theorem; delays in control; pseudo-transition matrix; the Caputo derivative
UR - http://eudml.org/doc/295056
ER -

References

top
  1. Babiarz, A., Czornik, A., Niezabitowski, M., 10.1016/j.nahs.2015.12.004, Nonlinear Analysis: Hybrid Systems 21 (2016), 1-10. MR3500067DOI10.1016/j.nahs.2015.12.004
  2. Babiarz, A., Niezabitowski, M., 10.1155/2017/4715861, Math. Problems Engrg. 4715861 (2017), 1-15. MR3603402DOI10.1155/2017/4715861
  3. Balachandran, K., Kokila, J., 10.2478/v10006-012-0039-0, Int. J. Appl. Math. Comput. Sci. 22 (2012), 523-531. MR3025259DOI10.2478/v10006-012-0039-0
  4. Balachandran, K., Zhou, Y., Kokila, J., Relative controllability of fractional dynamical systems with delays in control., Commun. Nonlinear Sci. Numer. Simul. 17 Zbl1248.93022MR2913988
  5. Balachandran, K., Park, J. Y., Trujillo, J. J., 10.1016/j.na.2011.09.042, Nonlinear Analysis 75 (2012), 1919-1926. MR2870885DOI10.1016/j.na.2011.09.042
  6. Balachandran, K., Kokila, J., 10.1080/01630563.2013.778868, Numer. Functional Anal. Optim. 34 (2013), 1187-1205. MR3175614DOI10.1080/01630563.2013.778868
  7. Balachandran, K., Kokila, J., 10.1049/iet-cta.2012.0049, IET Control Theory Appl.7 (2013), 1242-1248. MR3175614DOI10.1049/iet-cta.2012.0049
  8. Balachandran, K., 10.1007/978-3-319-45474-0_29, Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332. MR3638562DOI10.1007/978-3-319-45474-0_29
  9. Chen, Y. Q., Ahn, H. S., Xue, D., 10.1016/j.sigpro.2006.02.021, Signal Processes 86 (2006), 2794-2802. DOI10.1016/j.sigpro.2006.02.021
  10. Deng, W., Li, C., Lu, J., 10.1007/s11071-006-9094-0, Nonlinear Dynamics 48 (2007), 409-416. MR2312588DOI10.1007/s11071-006-9094-0
  11. Isac, G., On Rothe's fixed point theorem in a general topological vector space., An. St. Univ. Ovidius Constanta 12 (2004), 127-134. MR2209122
  12. Iturriaga, E., Leiva, H., 10.4236/am.2010.14033, Appl. Math. 1 (2010), 265-273. DOI10.4236/am.2010.14033
  13. Kaczorek, T., 10.1007/978-3-642-20502-6, Lect. Notes Control Inform. Sci. 2011. Zbl1221.93002MR2798773DOI10.1007/978-3-642-20502-6
  14. Kaczorek, T., Rogowski, K., 10.1007/978-3-319-11361-6, Studies in Systems, Decision and Control, 2015. Zbl1354.93001MR3497539DOI10.1007/978-3-319-11361-6
  15. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies, 2006. Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  16. Klamka, J., Controllability of Dynamical Systems., Kluwer Academic Publishers, 1991. Zbl0818.93002MR1134783
  17. Klamka, J., 10.1007/978-90-481-3293-5_45, New Trends Nanotechology and Fractional Calculus Applications, Springer, 2010. MR2642623DOI10.1007/978-90-481-3293-5_45
  18. Klamka, J., Local controllability of fractional discrete-time semilinear systems., Acta Mechanica at Automatica 5 (2011), 55-58. 
  19. Klamka, J., 10.2478/bpasts-2013-0031, Bull. Pol. Ac.: Tech. Sci. 61 (2013), 335-342. MR1134783DOI10.2478/bpasts-2013-0031
  20. Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A., 10.1109/icca.2014.6871094, In: Proc. 11th IEEE International Conference on Control and Automation, Taiwan 2014, pp. 1210-1214. MR3728359DOI10.1109/icca.2014.6871094
  21. Klamka, J., Czornik, A., 10.1109/carpathiancc.2016.7501117, In: Proc. 17th International Carpathian Control Conference 2016, pp. 324-328. DOI10.1109/carpathiancc.2016.7501117
  22. Klamka, J., Sikora, B., 10.1007/978-3-319-45474-0_30, Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344. DOI10.1007/978-3-319-45474-0_30
  23. Leiva, H., 10.1016/j.sysconle.2014.01.008, Systems Control Lett. 67 (2014), 14-18. MR3183375DOI10.1016/j.sysconle.2014.01.008
  24. Luyben, W. L., 10.1002/pol.1973.130110416, McGraw-Hill, Chemical Engineering Series, International Editions, 1990. DOI10.1002/pol.1973.130110416
  25. Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Calculus., Villey 1993. MR1219954
  26. Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V., 10.1007/978-1-84996-335-0, Springer-Verlag 2010. MR3012798DOI10.1007/978-1-84996-335-0
  27. Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J., 10.1016/s0034-4877(16)30007-6, Reports Math. Physics 77 (2016), 87-104. MR3461800DOI10.1016/s0034-4877(16)30007-6
  28. Odibat, Z. M., 10.1016/j.camwa.2009.06.035, Computers Math. Appl. 59 (2010), 1171-1183. MR2579481DOI10.1016/j.camwa.2009.06.035
  29. Oldham, K. B., Spanier, J., The Fractional Calculus., Academic Press 1974. Zbl0292.26011MR0361633
  30. Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications., In: Mathematics in Science and Engineering, Academic Press 1999. Zbl0924.34008MR1658022
  31. Sabatier, J., Agrawal, O. P., Machado, J. A Tenreiro, 10.1007/978-1-4020-6042-7, In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007. MR2432163DOI10.1007/978-1-4020-6042-7
  32. Sakthivel, R., Ren, Y., Mahmudov, N.I., 10.1016/j.camwa.2011.04.040, Computers Math. Appl. 62 (2011), 1451-1459. MR2824732DOI10.1016/j.camwa.2011.04.040
  33. Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M., 10.1016/j.cnsns.2013.05.015, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. MR3081379DOI10.1016/j.cnsns.2013.05.015
  34. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications., Gordan and Breach Science Publishers 1993. Zbl0818.26003MR1347689
  35. Sikora, B., 10.1049/iet-cta.2015.0935, IET Control Theory Appl. 10 (2016), 320-327. MR3468656DOI10.1049/iet-cta.2015.0935
  36. Sikora, B., 10.1515/amcs-2016-0036, Int. J. Appl. Math. Computer Sci. 26 (2016), 521-531. Zbl1347.93057MR3560625DOI10.1515/amcs-2016-0036
  37. Sikora, B., Klamka, J., 10.1016/j.sysconle.2017.04.013, Systems Control Lett. 106 (2017), 9-15. MR3681007DOI10.1016/j.sysconle.2017.04.013
  38. Sikora, B., Klamka, J., 10.14736/kyb-2017-2-0370, Kybernetika 53 (2017), 370-381. MR3661357DOI10.14736/kyb-2017-2-0370
  39. Smart, J. D. R., Fixed Points Theorems., Cambridge University Press, 1974. MR0467717
  40. Trzasko, W., Reachability and controllability of positive fractional discrete-time systems with delay., J. Automat. Mobile Robotics Intell. Systems 2 (2008), 43-47. 
  41. Wang, J., Zhou, Y., 10.1016/j.cnsns.2012.02.029, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 4346-4355. MR2930338DOI10.1016/j.cnsns.2012.02.029
  42. Wei, J., 10.1016/j.camwa.2012.02.065, Computers Math. Appl. 64 (2012), 3153-3159. Zbl1268.93027MR2989343DOI10.1016/j.camwa.2012.02.065

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.