On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays
Kybernetika (2019)
- Volume: 55, Issue: 4, page 675-689
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSikora, Beata. "On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays." Kybernetika 55.4 (2019): 675-689. <http://eudml.org/doc/295056>.
@article{Sikora2019,
abstract = {The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function $f$. The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time $t>0$ is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study.},
author = {Sikora, Beata},
journal = {Kybernetika},
keywords = {fractional systems; semilinear control systems; Rothe's fixed point theorem; delays in control; pseudo-transition matrix; the Caputo derivative},
language = {eng},
number = {4},
pages = {675-689},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays},
url = {http://eudml.org/doc/295056},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Sikora, Beata
TI - On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 4
SP - 675
EP - 689
AB - The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function $f$. The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time $t>0$ is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study.
LA - eng
KW - fractional systems; semilinear control systems; Rothe's fixed point theorem; delays in control; pseudo-transition matrix; the Caputo derivative
UR - http://eudml.org/doc/295056
ER -
References
top- Babiarz, A., Czornik, A., Niezabitowski, M., 10.1016/j.nahs.2015.12.004, Nonlinear Analysis: Hybrid Systems 21 (2016), 1-10. MR3500067DOI10.1016/j.nahs.2015.12.004
- Babiarz, A., Niezabitowski, M., 10.1155/2017/4715861, Math. Problems Engrg. 4715861 (2017), 1-15. MR3603402DOI10.1155/2017/4715861
- Balachandran, K., Kokila, J., 10.2478/v10006-012-0039-0, Int. J. Appl. Math. Comput. Sci. 22 (2012), 523-531. MR3025259DOI10.2478/v10006-012-0039-0
- Balachandran, K., Zhou, Y., Kokila, J., Relative controllability of fractional dynamical systems with delays in control., Commun. Nonlinear Sci. Numer. Simul. 17 Zbl1248.93022MR2913988
- Balachandran, K., Park, J. Y., Trujillo, J. J., 10.1016/j.na.2011.09.042, Nonlinear Analysis 75 (2012), 1919-1926. MR2870885DOI10.1016/j.na.2011.09.042
- Balachandran, K., Kokila, J., 10.1080/01630563.2013.778868, Numer. Functional Anal. Optim. 34 (2013), 1187-1205. MR3175614DOI10.1080/01630563.2013.778868
- Balachandran, K., Kokila, J., 10.1049/iet-cta.2012.0049, IET Control Theory Appl.7 (2013), 1242-1248. MR3175614DOI10.1049/iet-cta.2012.0049
- Balachandran, K., 10.1007/978-3-319-45474-0_29, Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332. MR3638562DOI10.1007/978-3-319-45474-0_29
- Chen, Y. Q., Ahn, H. S., Xue, D., 10.1016/j.sigpro.2006.02.021, Signal Processes 86 (2006), 2794-2802. DOI10.1016/j.sigpro.2006.02.021
- Deng, W., Li, C., Lu, J., 10.1007/s11071-006-9094-0, Nonlinear Dynamics 48 (2007), 409-416. MR2312588DOI10.1007/s11071-006-9094-0
- Isac, G., On Rothe's fixed point theorem in a general topological vector space., An. St. Univ. Ovidius Constanta 12 (2004), 127-134. MR2209122
- Iturriaga, E., Leiva, H., 10.4236/am.2010.14033, Appl. Math. 1 (2010), 265-273. DOI10.4236/am.2010.14033
- Kaczorek, T., 10.1007/978-3-642-20502-6, Lect. Notes Control Inform. Sci. 2011. Zbl1221.93002MR2798773DOI10.1007/978-3-642-20502-6
- Kaczorek, T., Rogowski, K., 10.1007/978-3-319-11361-6, Studies in Systems, Decision and Control, 2015. Zbl1354.93001MR3497539DOI10.1007/978-3-319-11361-6
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies, 2006. Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
- Klamka, J., Controllability of Dynamical Systems., Kluwer Academic Publishers, 1991. Zbl0818.93002MR1134783
- Klamka, J., 10.1007/978-90-481-3293-5_45, New Trends Nanotechology and Fractional Calculus Applications, Springer, 2010. MR2642623DOI10.1007/978-90-481-3293-5_45
- Klamka, J., Local controllability of fractional discrete-time semilinear systems., Acta Mechanica at Automatica 5 (2011), 55-58.
- Klamka, J., 10.2478/bpasts-2013-0031, Bull. Pol. Ac.: Tech. Sci. 61 (2013), 335-342. MR1134783DOI10.2478/bpasts-2013-0031
- Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A., 10.1109/icca.2014.6871094, In: Proc. 11th IEEE International Conference on Control and Automation, Taiwan 2014, pp. 1210-1214. MR3728359DOI10.1109/icca.2014.6871094
- Klamka, J., Czornik, A., 10.1109/carpathiancc.2016.7501117, In: Proc. 17th International Carpathian Control Conference 2016, pp. 324-328. DOI10.1109/carpathiancc.2016.7501117
- Klamka, J., Sikora, B., 10.1007/978-3-319-45474-0_30, Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344. DOI10.1007/978-3-319-45474-0_30
- Leiva, H., 10.1016/j.sysconle.2014.01.008, Systems Control Lett. 67 (2014), 14-18. MR3183375DOI10.1016/j.sysconle.2014.01.008
- Luyben, W. L., 10.1002/pol.1973.130110416, McGraw-Hill, Chemical Engineering Series, International Editions, 1990. DOI10.1002/pol.1973.130110416
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Calculus., Villey 1993. MR1219954
- Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V., 10.1007/978-1-84996-335-0, Springer-Verlag 2010. MR3012798DOI10.1007/978-1-84996-335-0
- Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J., 10.1016/s0034-4877(16)30007-6, Reports Math. Physics 77 (2016), 87-104. MR3461800DOI10.1016/s0034-4877(16)30007-6
- Odibat, Z. M., 10.1016/j.camwa.2009.06.035, Computers Math. Appl. 59 (2010), 1171-1183. MR2579481DOI10.1016/j.camwa.2009.06.035
- Oldham, K. B., Spanier, J., The Fractional Calculus., Academic Press 1974. Zbl0292.26011MR0361633
- Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications., In: Mathematics in Science and Engineering, Academic Press 1999. Zbl0924.34008MR1658022
- Sabatier, J., Agrawal, O. P., Machado, J. A Tenreiro, 10.1007/978-1-4020-6042-7, In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007. MR2432163DOI10.1007/978-1-4020-6042-7
- Sakthivel, R., Ren, Y., Mahmudov, N.I., 10.1016/j.camwa.2011.04.040, Computers Math. Appl. 62 (2011), 1451-1459. MR2824732DOI10.1016/j.camwa.2011.04.040
- Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M., 10.1016/j.cnsns.2013.05.015, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. MR3081379DOI10.1016/j.cnsns.2013.05.015
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications., Gordan and Breach Science Publishers 1993. Zbl0818.26003MR1347689
- Sikora, B., 10.1049/iet-cta.2015.0935, IET Control Theory Appl. 10 (2016), 320-327. MR3468656DOI10.1049/iet-cta.2015.0935
- Sikora, B., 10.1515/amcs-2016-0036, Int. J. Appl. Math. Computer Sci. 26 (2016), 521-531. Zbl1347.93057MR3560625DOI10.1515/amcs-2016-0036
- Sikora, B., Klamka, J., 10.1016/j.sysconle.2017.04.013, Systems Control Lett. 106 (2017), 9-15. MR3681007DOI10.1016/j.sysconle.2017.04.013
- Sikora, B., Klamka, J., 10.14736/kyb-2017-2-0370, Kybernetika 53 (2017), 370-381. MR3661357DOI10.14736/kyb-2017-2-0370
- Smart, J. D. R., Fixed Points Theorems., Cambridge University Press, 1974. MR0467717
- Trzasko, W., Reachability and controllability of positive fractional discrete-time systems with delay., J. Automat. Mobile Robotics Intell. Systems 2 (2008), 43-47.
- Wang, J., Zhou, Y., 10.1016/j.cnsns.2012.02.029, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 4346-4355. MR2930338DOI10.1016/j.cnsns.2012.02.029
- Wei, J., 10.1016/j.camwa.2012.02.065, Computers Math. Appl. 64 (2012), 3153-3159. Zbl1268.93027MR2989343DOI10.1016/j.camwa.2012.02.065
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.