New criterion for asymptotic stability of time-varying dynamical systems
Taoufik Ghrissi; Mohamed Ali Hammami; Mekki Hammi; Mohamed Mabrouk
Kybernetika (2017)
- Volume: 53, Issue: 2, page 331-353
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGhrissi, Taoufik, et al. "New criterion for asymptotic stability of time-varying dynamical systems." Kybernetika 53.2 (2017): 331-353. <http://eudml.org/doc/288179>.
@article{Ghrissi2017,
abstract = {In this paper, we establish some new sufficient conditions for uniform global asymptotic stability for certain classes of nonlinear systems. Lyapunov approach is applied to study exponential stability and stabilization of time-varying systems. Sufficient conditions are obtained based on new nonlinear differential inequalities. Moreover, some examples are treated and an application to control systems is given.},
author = {Ghrissi, Taoufik, Hammami, Mohamed Ali, Hammi, Mekki, Mabrouk, Mohamed},
journal = {Kybernetika},
keywords = {nonlinear time-varying systems; asymptotic stability; stabilization},
language = {eng},
number = {2},
pages = {331-353},
publisher = {Institute of Information Theory and Automation AS CR},
title = {New criterion for asymptotic stability of time-varying dynamical systems},
url = {http://eudml.org/doc/288179},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Ghrissi, Taoufik
AU - Hammami, Mohamed Ali
AU - Hammi, Mekki
AU - Mabrouk, Mohamed
TI - New criterion for asymptotic stability of time-varying dynamical systems
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 2
SP - 331
EP - 353
AB - In this paper, we establish some new sufficient conditions for uniform global asymptotic stability for certain classes of nonlinear systems. Lyapunov approach is applied to study exponential stability and stabilization of time-varying systems. Sufficient conditions are obtained based on new nonlinear differential inequalities. Moreover, some examples are treated and an application to control systems is given.
LA - eng
KW - nonlinear time-varying systems; asymptotic stability; stabilization
UR - http://eudml.org/doc/288179
ER -
References
top- Aeyels, O., Penteman, P., 10.1109/9.701102, IEEE Trans. Automat. Control 43 (1998), 968-971. MR1633504DOI10.1109/9.701102
- Bay, N. S., Phat, V. N., Stability of nonlinear difference time varying systems with delays., Vietnam J. Math. 4 (1999), 129-136.
- BenAbdallah, A., Ellouze, I., Hammami, M. A., 10.1007/s10883-008-9057-5, J. Dynamical Control Systems 15 (2009), 1, 45-62. Zbl1203.93160MR2475660DOI10.1007/s10883-008-9057-5
- Corless, M, 10.1007/bf00939420, J. Optim. Theory Appl. 64 (1990), 3, 481-494. MR1043736DOI10.1007/bf00939420
- Corless, M., Leitmann, G., Controller design for uncertain systems via Lyapunov functions., In: Proc. 1988 American Control Conference, Atlanta 1988.
- Garofalo, F., Leitmann, G., 10.1115/1.3153097, J. Dynamic Systems, Measurement, and Control 111 (1989), 584-588. Zbl0714.93013DOI10.1115/1.3153097
- Hahn, W., 10.1007/978-3-642-50085-5, Springer, New York 1967. Zbl0189.38503MR0223668DOI10.1007/978-3-642-50085-5
- A.Hammami, M., 10.1023/a:1013099004015, J. Dynamical Control Systems 7 (2001), 2, 171-179. MR1830490DOI10.1023/a:1013099004015
- Hammi, M., Hammami, M. A., 10.1093/imamci/dnu016, IMA J. Math. Control Inform. 32 (2015), 4, 717-736. Zbl1328.93214MR3436122DOI10.1093/imamci/dnu016
- Hammi, M., A.Hammami, M., 10.4067/s0719-06462015000300004, CUBO Math. J. 17 (2015), 3, 53-70. MR3445845DOI10.4067/s0719-06462015000300004
- Khalil, H., Nonlinear Systems., Prentice Hall 2002. Zbl1194.93083
- Lakshmikantham, V., Leela, S., Martynuk, A. A., 10.1142/1192, World Scientific Publishing Co. Pte. Ltd. 1990. MR1089428DOI10.1142/1192
- Lü, J., Chen, G., 10.1109/tac.2005.849233, IEEE Trans. Automat. Control. 50 (2005), 6, 841-846. MR2142000DOI10.1109/tac.2005.849233
- Liu, K., Zhu, H., Lü, J., 10.1109/tcsi.2015.2434101, IEEE Trans. Circuits and Systems I 62 (2015), 7, 1836-1844. MR3361623DOI10.1109/tcsi.2015.2434101
- Liu, K., Wu, L., Lü, J., Zhu, H., 10.1007/s11431-015-5989-7, Science China Technol. Sci. 59 (2016), 1, 22-32. DOI10.1007/s11431-015-5989-7
- Li, Y., Wu, X., Lu, J., Lü, J., 10.1109/tcsii.2015.2468924, IEEE Trans. Circuits and Systems II - Express Briefs 63 (2016), 2, 206-210. DOI10.1109/tcsii.2015.2468924
- Lin, W., Pongvuthithum, R., 10.1109/tac.2002.800743, IEEE Trans. Automat. Control 47 (2002), 1356-1362. MR1917450DOI10.1109/tac.2002.800743
- Pantely, E., Loria, A., 10.1016/s0167-6911(97)00119-9, System Control Lett. 33 (1998), 131-138. MR1607815DOI10.1016/s0167-6911(97)00119-9
- Pham, Q. C., Tabareau, N., Slotine, J. J. E., 10.1109/tac.2008.2009619, IEEE Trans. Automat. Control 54 (2009), 4, 816-820. MR2514815DOI10.1109/tac.2008.2009619
- Phat, V. N., 10.1016/j.amc.2005.09.017, Appl. Math. Comput. 175 (2006), 1730-1743. Zbl1131.93044MR2225620DOI10.1016/j.amc.2005.09.017
- Martynyuk, A. A., Stability in the models of real world phenomena., Nonlinear Dyn. Syst. Theory 11 (2011), 1, 7-52. Zbl1283.70006MR2798814
- Mu, X., Cheng, D., 10.1111/j.1934-6093.2005.tb00234.x, Asian J. Control 7 (2005), 3, 244-255. DOI10.1111/j.1934-6093.2005.tb00234.x
- Pata, V., 10.1016/j.jmaa.2010.07.006, J. Math. Anal. Appl. xx (2011), 264-270. MR2684477DOI10.1016/j.jmaa.2010.07.006
- Zubov, V. I., Methods of A. M. Lyapunov and Their Applications., P. Noordhoff, Groningen, 1964. MR0179428
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.