Applications of limited information strategies in Menger's game

Steven Clontz

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 2, page 225-239
  • ISSN: 0010-2628

Abstract

top
As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize σ -compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize σ -compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between σ -compact and Menger spaces.

How to cite

top

Clontz, Steven. "Applications of limited information strategies in Menger's game." Commentationes Mathematicae Universitatis Carolinae 58.2 (2017): 225-239. <http://eudml.org/doc/288191>.

@article{Clontz2017,
abstract = {As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize $\sigma $-compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize $\sigma $-compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between $\sigma $-compact and Menger spaces.},
author = {Clontz, Steven},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Menger property; Menger game; $\sigma $-compact spaces; limited information strategies},
language = {eng},
number = {2},
pages = {225-239},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Applications of limited information strategies in Menger's game},
url = {http://eudml.org/doc/288191},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Clontz, Steven
TI - Applications of limited information strategies in Menger's game
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 2
SP - 225
EP - 239
AB - As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize $\sigma $-compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize $\sigma $-compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between $\sigma $-compact and Menger spaces.
LA - eng
KW - Menger property; Menger game; $\sigma $-compact spaces; limited information strategies
UR - http://eudml.org/doc/288191
ER -

References

top
  1. Arhangel'skii A.V., From classic topological invariants to relative topological properties, Sci. Math. Jpn. 24 (2002), no. 1, 153–201. Zbl0994.54024MR1885790
  2. Hurewicz W., 10.1007/BF01216792, Math. Z. 24 (1926), no. 1, 401–421. MR1544773DOI10.1007/BF01216792
  3. Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam-New York, 1980. Zbl0534.03026MR0597342
  4. Scheepers M., Concerning n -tactics in the countable-finite game, J. Symbolic Logic 3 (1991), no. 3, 786–794. Zbl0745.03039MR1129143
  5. Scheepers M., A direct proof of a theorem of Telgársky, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3483–3485. Zbl0842.90143MR1273523
  6. Scheepers M., 10.1016/0166-8641(95)00067-4, Topology Appl. 69 (1996), no. 1, 31–62. Zbl0848.54018MR1378387DOI10.1016/0166-8641(95)00067-4
  7. Steen L.A., Seebach J.A., Counterexamples in topology, Dover Publications, Inc., Mineola, NY, 1995; reprint of the second (1978) edition. Zbl0386.54001MR1382863
  8. Telgársky R., 10.7146/math.scand.a-12050, Math. Scand. 54 (1984), no. 1, 170–176. Zbl0525.54016MR0753073DOI10.7146/math.scand.a-12050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.